-
Notifications
You must be signed in to change notification settings - Fork 30
/
rpi_dma_utils.c
346 lines (307 loc) · 8.86 KB
/
rpi_dma_utils.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
// Raspberry Pi DMA utilities; see https://iosoft.blog for details
//
// Copyright (c) 2020 Jeremy P Bentham
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <signal.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include "rpi_dma_utils.h"
// If non-zero, print debug information
#define DEBUG 0
// If non-zero, enable PWM hardware output
#define PWM_OUT 0
char *dma_regstrs[] = {"DMA CS", "CB_AD", "TI", "SRCE_AD", "DEST_AD",
"TFR_LEN", "STRIDE", "NEXT_CB", "DEBUG", ""};
char *gpio_mode_strs[] = {GPIO_MODE_STRS};
// Virtual memory pointers to acceess GPIO, DMA and PWM from user space
MEM_MAP pwm_regs, gpio_regs, dma_regs, clk_regs;
// Use mmap to obtain virtual address, given physical
void *map_periph(MEM_MAP *mp, void *phys, int size)
{
mp->phys = phys;
mp->size = PAGE_ROUNDUP(size);
mp->bus = (void *)((uint32_t)phys - PHYS_REG_BASE + BUS_REG_BASE);
mp->virt = map_segment(phys, mp->size);
return(mp->virt);
}
// Allocate uncached memory, get bus & phys addresses
void *map_uncached_mem(MEM_MAP *mp, int size)
{
void *ret;
mp->size = PAGE_ROUNDUP(size);
mp->fd = open_mbox();
ret = (mp->h = alloc_vc_mem(mp->fd, mp->size, DMA_MEM_FLAGS)) > 0 &&
(mp->bus = lock_vc_mem(mp->fd, mp->h)) != 0 &&
(mp->virt = map_segment(BUS_PHYS_ADDR(mp->bus), mp->size)) != 0
? mp->virt : 0;
printf("VC mem handle %u, phys %p, virt %p\n", mp->h, mp->bus, mp->virt);
return(ret);
}
// Free mapped peripheral or memory
void unmap_periph_mem(MEM_MAP *mp)
{
if (mp)
{
if (mp->fd)
{
unmap_segment(mp->virt, mp->size);
unlock_vc_mem(mp->fd, mp->h);
free_vc_mem(mp->fd, mp->h);
close_mbox(mp->fd);
}
else
unmap_segment(mp->virt, mp->size);
}
}
// ----- GPIO -----
// Set input or output with pullups
void gpio_set(int pin, int mode, int pull)
{
gpio_mode(pin, mode);
gpio_pull(pin, pull);
}
// Set I/P pullup or pulldown
void gpio_pull(int pin, int pull)
{
volatile uint32_t *reg = REG32(gpio_regs, GPIO_GPPUDCLK0) + pin / 32;
*REG32(gpio_regs, GPIO_GPPUD) = pull;
usleep(2);
*reg = pin << (pin % 32);
usleep(2);
*REG32(gpio_regs, GPIO_GPPUD) = 0;
*reg = 0;
}
// Set input or output
void gpio_mode(int pin, int mode)
{
volatile uint32_t *reg = REG32(gpio_regs, GPIO_MODE0) + pin / 10, shift = (pin % 10) * 3;
*reg = (*reg & ~(7 << shift)) | (mode << shift);
}
// Set an O/P pin
void gpio_out(int pin, int val)
{
volatile uint32_t *reg = REG32(gpio_regs, val ? GPIO_SET0 : GPIO_CLR0) + pin/32;
*reg = 1 << (pin % 32);
}
// Get an I/P pin value
uint8_t gpio_in(int pin)
{
volatile uint32_t *reg = REG32(gpio_regs, GPIO_LEV0) + pin/32;
return (((*reg) >> (pin % 32)) & 1);
}
// Display the values in a GPIO mode register
void disp_mode_vals(uint32_t mode)
{
int i;
for (i=0; i<10; i++)
printf("%u:%-4s ", i, gpio_mode_strs[(mode>>(i*3)) & 7]);
printf("\n");
}
// ----- VIDEOCORE MAILBOX -----
// Open mailbox interface, return file descriptor
int open_mbox(void)
{
int fd;
if ((fd = open("/dev/vcio", 0)) < 0)
fail("Error: can't open VC mailbox\n");
return(fd);
}
// Close mailbox interface
void close_mbox(int fd)
{
if (fd >= 0)
close(fd);
}
// Send message to mailbox, return first response int, 0 if error
uint32_t msg_mbox(int fd, VC_MSG *msgp)
{
uint32_t ret=0, i;
for (i=msgp->dlen/4; i<=msgp->blen/4; i+=4)
msgp->uints[i++] = 0;
msgp->len = (msgp->blen + 6) * 4;
msgp->req = 0;
if (ioctl(fd, _IOWR(100, 0, void *), msgp) < 0)
printf("VC IOCTL failed\n");
else if ((msgp->req&0x80000000) == 0)
printf("VC IOCTL error\n");
else if (msgp->req == 0x80000001)
printf("VC IOCTL partial error\n");
else
ret = msgp->uints[0];
#if DEBUG
disp_vc_msg(msgp);
#endif
return(ret);
}
// Allocate memory on PAGE_SIZE boundary, return handle
uint32_t alloc_vc_mem(int fd, uint32_t size, VC_ALLOC_FLAGS flags)
{
VC_MSG msg={.tag=0x3000c, .blen=12, .dlen=12,
.uints={PAGE_ROUNDUP(size), PAGE_SIZE, flags}};
return(msg_mbox(fd, &msg));
}
// Lock allocated memory, return bus address
void *lock_vc_mem(int fd, int h)
{
VC_MSG msg={.tag=0x3000d, .blen=4, .dlen=4, .uints={h}};
return(h ? (void *)msg_mbox(fd, &msg) : 0);
}
// Unlock allocated memory
uint32_t unlock_vc_mem(int fd, int h)
{
VC_MSG msg={.tag=0x3000e, .blen=4, .dlen=4, .uints={h}};
return(h ? msg_mbox(fd, &msg) : 0);
}
// Free memory
uint32_t free_vc_mem(int fd, int h)
{
VC_MSG msg={.tag=0x3000f, .blen=4, .dlen=4, .uints={h}};
return(h ? msg_mbox(fd, &msg) : 0);
}
uint32_t set_vc_clock(int fd, int id, uint32_t freq)
{
VC_MSG msg1={.tag=0x38001, .blen=8, .dlen=8, .uints={id, 1}};
VC_MSG msg2={.tag=0x38002, .blen=12, .dlen=12, .uints={id, freq, 0}};
msg_mbox(fd, &msg1);
disp_vc_msg(&msg1);
msg_mbox(fd, &msg2);
disp_vc_msg(&msg2);
return(0);
}
// Display mailbox message
void disp_vc_msg(VC_MSG *msgp)
{
int i;
printf("VC msg len=%X, req=%X, tag=%X, blen=%x, dlen=%x, data ",
msgp->len, msgp->req, msgp->tag, msgp->blen, msgp->dlen);
for (i=0; i<msgp->blen/4; i++)
printf("%08X ", msgp->uints[i]);
printf("\n");
}
// ----- VIRTUAL MEMORY -----
// Get virtual memory segment for peripheral regs or physical mem
void *map_segment(void *addr, int size)
{
int fd;
void *mem;
size = PAGE_ROUNDUP(size);
if ((fd = open ("/dev/mem", O_RDWR|O_SYNC|O_CLOEXEC)) < 0)
fail("Error: can't open /dev/mem, run using sudo\n");
mem = mmap(0, size, PROT_WRITE|PROT_READ, MAP_SHARED, fd, (uint32_t)addr);
close(fd);
#if DEBUG
printf("Map %p -> %p\n", (void *)addr, mem);
#endif
if (mem == MAP_FAILED)
fail("Error: can't map memory\n");
return(mem);
}
// Free mapped memory
void unmap_segment(void *mem, int size)
{
if (mem)
munmap(mem, PAGE_ROUNDUP(size));
}
// ----- DMA -----
// Enable and reset DMA
void enable_dma(int chan)
{
*REG32(dma_regs, DMA_ENABLE) |= (1 << chan);
*REG32(dma_regs, DMA_REG(chan, DMA_CS)) = 1 << 31;
}
// Start DMA, given first control block
void start_dma(MEM_MAP *mp, int chan, DMA_CB *cbp, uint32_t csval)
{
*REG32(dma_regs, DMA_REG(chan, DMA_CONBLK_AD)) = MEM_BUS_ADDR(mp, cbp);
*REG32(dma_regs, DMA_REG(chan, DMA_CS)) = 2; // Clear 'end' flag
*REG32(dma_regs, DMA_REG(chan, DMA_DEBUG)) = 7; // Clear error bits
*REG32(dma_regs, DMA_REG(chan, DMA_CS)) = 1|csval; // Start DMA
}
// Return remaining transfer length
uint32_t dma_transfer_len(int chan)
{
return(*REG32(dma_regs, DMA_REG(chan, DMA_TXFR_LEN)));
}
// Check if DMA is active
uint32_t dma_active(int chan)
{
return((*REG32(dma_regs, DMA_REG(chan, DMA_CS))) & 1);
}
// Halt current DMA operation by resetting controller
void stop_dma(int chan)
{
if (dma_regs.virt)
*REG32(dma_regs, DMA_REG(chan, DMA_CS)) = 1 << 31;
}
// Display DMA registers
void disp_dma(int chan)
{
volatile uint32_t *p=REG32(dma_regs, DMA_REG(chan, DMA_CS));
int i=0;
while (dma_regstrs[i][0])
{
printf("%-7s %08X ", dma_regstrs[i++], *p++);
if (i%5==0 || dma_regstrs[i][0]==0)
printf("\n");
}
}
// ----- PWM -----
// Initialise PWM
void init_pwm(int freq, int range, int val)
{
stop_pwm();
if (*REG32(pwm_regs, PWM_STA) & 0x100)
{
printf("PWM bus error\n");
*REG32(pwm_regs, PWM_STA) = 0x100;
}
#if USE_VC_CLOCK_SET
set_vc_clock(mbox_fd, PWM_CLOCK_ID, freq);
#else
int divi=CLOCK_HZ / freq;
*REG32(clk_regs, CLK_PWM_CTL) = CLK_PASSWD | (1 << 5);
while (*REG32(clk_regs, CLK_PWM_CTL) & (1 << 7)) ;
*REG32(clk_regs, CLK_PWM_DIV) = CLK_PASSWD | (divi << 12);
*REG32(clk_regs, CLK_PWM_CTL) = CLK_PASSWD | 6 | (1 << 4);
while ((*REG32(clk_regs, CLK_PWM_CTL) & (1 << 7)) == 0) ;
#endif
usleep(100);
*REG32(pwm_regs, PWM_RNG1) = range;
*REG32(pwm_regs, PWM_FIF1) = val;
#if PWM_OUT
gpio_mode(PWM_PIN, PWM_PIN==12 ? GPIO_ALT0 : GPIO_ALT5);
#endif
}
// Start PWM operation
void start_pwm(void)
{
*REG32(pwm_regs, PWM_CTL) = PWM_CTL_USEF1 | PWM_ENAB;
}
// Stop PWM operation
void stop_pwm(void)
{
if (pwm_regs.virt)
{
*REG32(pwm_regs, PWM_CTL) = 0;
usleep(100);
}
}
// EOF