-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathOCR_CNN_Trainning.py
165 lines (144 loc) · 5.27 KB
/
OCR_CNN_Trainning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import numpy as np
import cv2
import os
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from keras.preprocessing.image import ImageDataGenerator
from keras.utils.np_utils import to_categorical
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
from keras.layers import Dropout,Flatten
from keras.layers.convolutional import Conv2D,MaxPooling2D
import pickle
################ PARAMETERS ########################
path = 'myData'
testRatio = 0.2
valRatio = 0.2
imageDimensions= (32,32,3)
batchSizeVal= 50
epochsVal = 10
stepsPerEpochVal = 2000
####################################################
#### IMPORTING DATA/IMAGES FROM FOLDERS
count = 0
images = [] # LIST CONTAINING ALL THE IMAGES
classNo = [] # LIST CONTAINING ALL THE CORRESPONDING CLASS ID OF IMAGES
myList = os.listdir(path)
print("Total Classes Detected:",len(myList))
noOfClasses = len(myList)
print("Importing Classes .......")
for x in range (0,noOfClasses):
myPicList = os.listdir(path+"/"+str(x))
for y in myPicList:
curImg = cv2.imread(path+"/"+str(x)+"/"+y)
curImg = cv2.resize(curImg,(32,32))
images.append(curImg)
classNo.append(x)
print(x,end= " ")
print(" ")
print("Total Images in Images List = ",len(images))
print("Total IDS in classNo List= ",len(classNo))
#### CONVERT TO NUMPY ARRAY
images = np.array(images)
classNo = np.array(classNo)
print(images.shape)
#### SPLITTING THE DATA
X_train,X_test,y_train,y_test = train_test_split(images,classNo,test_size=testRatio)
X_train,X_validation,y_train,y_validation = train_test_split(X_train,y_train,test_size=valRatio)
print(X_train.shape)
print(X_test.shape)
print(X_validation.shape)
#### PLOT BAR CHART FOR DISTRIBUTION OF IMAGES
numOfSamples= []
for x in range(0,noOfClasses):
#print(len(np.where(y_train==x)[0]))
numOfSamples.append(len(np.where(y_train==x)[0]))
print(numOfSamples)
plt.figure(figsize=(10,5))
plt.bar(range(0,noOfClasses),numOfSamples)
plt.title("No of Images for each Class")
plt.xlabel("Class ID")
plt.ylabel("Number of Images")
plt.show()
#### PREPOSSESSING FUNCTION FOR IMAGES FOR TRAINING
def preProcessing(img):
img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
img = cv2.equalizeHist(img)
img = img/255
return img
# img = preProcessing(X_train[30])
# img = cv2.resize(img,(300,300))
# cv2.imshow("PreProcesssed",img)
# cv2.waitKey(0)
X_train= np.array(list(map(preProcessing,X_train)))
X_test= np.array(list(map(preProcessing,X_test)))
X_validation= np.array(list(map(preProcessing,X_validation)))
#### RESHAPE IMAGES
X_train = X_train.reshape(X_train.shape[0],X_train.shape[1],X_train.shape[2],1)
X_test = X_test.reshape(X_test.shape[0],X_test.shape[1],X_test.shape[2],1)
X_validation = X_validation.reshape(X_validation.shape[0],X_validation.shape[1],X_validation.shape[2],1)
#### IMAGE AUGMENTATION
dataGen = ImageDataGenerator(width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.2,
shear_range=0.1,
rotation_range=10)
dataGen.fit(X_train)
#### ONE HOT ENCODING OF MATRICES
y_train = to_categorical(y_train,noOfClasses)
y_test = to_categorical(y_test,noOfClasses)
y_validation = to_categorical(y_validation,noOfClasses)
#### CREATING THE MODEL
def myModel():
noOfFilters = 60
sizeOfFilter1 = (5,5)
sizeOfFilter2 = (3, 3)
sizeOfPool = (2,2)
noOfNodes= 500
model = Sequential()
model.add((Conv2D(noOfFilters,sizeOfFilter1,input_shape=(imageDimensions[0],
imageDimensions[1],1),activation='relu')))
model.add((Conv2D(noOfFilters, sizeOfFilter1, activation='relu')))
model.add(MaxPooling2D(pool_size=sizeOfPool))
model.add((Conv2D(noOfFilters//2, sizeOfFilter2, activation='relu')))
model.add((Conv2D(noOfFilters//2, sizeOfFilter2, activation='relu')))
model.add(MaxPooling2D(pool_size=sizeOfPool))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(noOfNodes,activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(noOfClasses, activation='softmax'))
model.compile(Adam(lr=0.001),loss='categorical_crossentropy',metrics=['accuracy'])
return model
model = myModel()
print(model.summary())
#### STARTING THE TRAINING PROCESS
history = model.fit_generator(dataGen.flow(X_train,y_train,
batch_size=batchSizeVal),
steps_per_epoch=stepsPerEpochVal,
epochs=epochsVal,
validation_data=(X_validation,y_validation),
shuffle=1)
#### PLOT THE RESULTS
plt.figure(1)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.legend(['training','validation'])
plt.title('Loss')
plt.xlabel('epoch')
plt.figure(2)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.legend(['training','validation'])
plt.title('Accuracy')
plt.xlabel('epoch')
plt.show()
#### EVALUATE USING TEST IMAGES
score = model.evaluate(X_test,y_test,verbose=0)
print('Test Score = ',score[0])
print('Test Accuracy =', score[1])
#### SAVE THE TRAINED MODEL
pickle_out= open("model_trained.p", "wb")
pickle.dump(model,pickle_out)
pickle_out.close()