forked from sunutf/Stop-or-Forward-SoF-Net-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_base.py
executable file
·1062 lines (865 loc) · 42 KB
/
main_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import warnings
warnings.filterwarnings("ignore")
import os
import sys
import time
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.nn.functional as F
from torch.nn.utils import clip_grad_norm_
import math
import shutil
from ops.dataset import TSNDataSet
from ops.models_sof import TSN_Sof
from ops.transforms import *
from sof_opts import parser
from ops import dataset_config
from ops.utils import AverageMeter, accuracy, cal_map, Recorder
from tensorboardX import SummaryWriter
from ops.my_logger import Logger
from ops.flops_table import get_gflops_params
from ops.utils import get_mobv2_new_sd
from os.path import join as ospj
def load_to_sd(model_dict, model_path, module_name, fc_name, resolution, apple_to_apple=False):
if ".pth" in model_path:
print("done loading\t%s\t(res:%3d) from\t%s" % ("%-25s" % module_name, resolution, model_path))
sd = torch.load(model_path)['state_dict']
if "module.block_cnn_dict.base.1.bias" in sd:
print("Directly upload")
return sd
if apple_to_apple:
del_keys = []
if args.remove_all_base_0:
for key in sd:
if "module.base_model_list.0" in key or "new_fc_list.0" in key or "linear." in key:
del_keys.append(key)
if args.no_weights_from_linear:
for key in sd:
if "linear." in key:
del_keys.append(key)
for key in list(set(del_keys)):
del sd[key]
return sd
replace_dict = []
nowhere_ks = []
notfind_ks = []
for k, v in sd.items():
new_k = k.replace("base_model", module_name)
new_k = new_k.replace("new_fc", fc_name)
if new_k in model_dict:
replace_dict.append((k, new_k))
else:
nowhere_ks.append(k)
for new_k, v in model_dict.items():
if module_name in new_k:
k = new_k.replace(module_name, "base_model")
if k not in sd:
notfind_ks.append(k)
if fc_name in new_k:
k = new_k.replace(fc_name, "new_fc")
if k not in sd:
notfind_ks.append(k)
if len(nowhere_ks) != 0:
print("Vars not in ada network, but are in pretrained weights\n" + ("\n%s NEW " % module_name).join(
nowhere_ks))
if len(notfind_ks) != 0:
print("Vars not in pretrained weights, but are needed in ada network\n" + ("\n%s LACK " % module_name).join(
notfind_ks))
for k, k_new in replace_dict:
sd[k_new] = sd.pop(k)
if "lite_backbone" in module_name:
# TODO not loading new_fc in this case, because we are using hidden_dim
if args.frame_independent == False:
del sd["module.lite_fc.weight"]
del sd["module.lite_fc.bias"]
return {k: v for k, v in sd.items() if k in model_dict}
else:
print("skip loading\t%s\t(res:%3d) from\t%s" % ("%-25s" % module_name, resolution, model_path))
return {}
def main():
t_start = time.time()
global args, best_prec1, num_class, use_ada_framework # , model
set_random_seed(args.random_seed)
use_ada_framework = args.stop_or_forward
if args.ablation:
logger = None
else:
if not test_mode:
logger = Logger()
sys.stdout = logger
else:
logger = None
num_class, args.train_list, args.val_list, args.root_path, prefix = dataset_config.return_dataset(args.dataset,
args.data_dir)
init_gflops_table()
model = TSN_Sof(num_class, args.num_segments,
base_model=args.arch,
consensus_type=args.consensus_type,
dropout=args.dropout,
partial_bn=not args.no_partialbn,
pretrain=args.pretrain,
fc_lr5=not (args.tune_from and args.dataset in args.tune_from),
args=args)
crop_size = model.crop_size
scale_size = model.scale_size
input_mean = model.input_mean
input_std = model.input_std
policies = model.get_optim_policies()
train_augmentation = model.get_augmentation(
flip=False if 'something' in args.dataset or 'jester' in args.dataset else True)
model = torch.nn.DataParallel(model, device_ids=args.gpus).cuda()
optimizer = torch.optim.SGD(policies,
args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
if args.resume:
if os.path.isfile(args.resume):
print(("=> loading checkpoint '{}'".format(args.resume)))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print(("=> loaded checkpoint '{}' (epoch {})"
.format(args.evaluate, checkpoint['epoch'])))
else:
print(("=> no checkpoint found at '{}'".format(args.resume)))
if args.tune_from:
print(("=> f/ine-tuning from '{}'".format(args.tune_from)))
sd = torch.load(args.tune_from)
sd = sd['state_dict']
model_dict = model.state_dict()
replace_dict = []
for k, v in sd.items():
if k not in model_dict and k.replace('.net', '') in model_dict:
print('=> Load after remove .net: ', k)
replace_dict.append((k, k.replace('.net', '')))
for k, v in model_dict.items():
if k not in sd and k.replace('.net', '') in sd:
print('=> Load after adding .net: ', k)
replace_dict.append((k.replace('.net', ''), k))
for k, k_new in replace_dict:
sd[k_new] = sd.pop(k)
keys1 = set(list(sd.keys()))
keys2 = set(list(model_dict.keys()))
set_diff = (keys1 - keys2) | (keys2 - keys1)
print('#### Notice: keys that failed to load: {}'.format(set_diff))
if args.dataset not in args.tune_from: # new dataset
print('=> New dataset, do not load fc weights')
sd = {k: v for k, v in sd.items() if 'fc' not in k}
model_dict.update(sd)
model.load_state_dict(model_dict)
if args.stop_or_forward:
if test_mode:
print("Test mode load from pretrained model SoF")
the_model_path = args.test_from
if ".pth.tar" not in the_model_path:
the_model_path = ospj(the_model_path, "models", "ckpt.best.pth.tar")
model_dict = model.state_dict()
sd = load_to_sd(model_dict, the_model_path, "foo", "bar", -1, apple_to_apple=True)
model_dict.update(sd)
model.load_state_dict(model_dict)
elif args.base_pretrained_from != "":
print("Adaptively load from pretrained whole SoF")
model_dict = model.state_dict()
sd = load_to_sd(model_dict, args.base_pretrained_from, "foo", "bar", -1, apple_to_apple=True)
model_dict.update(sd)
model.load_state_dict(model_dict)
elif len(args.model_paths) != 0:
print("Adaptively load from model_path_list SoF")
model_dict = model.state_dict()
for i, tmp_path in enumerate(args.model_paths):
base_model_index = i
new_i = i
sd = load_to_sd(model_dict, tmp_path, "base_model_list.%d" % base_model_index, "new_fc_list.%d" % new_i, 224)
model_dict.update(sd)
model.load_state_dict(model_dict)
cudnn.benchmark = True
# Data loading code
normalize = GroupNormalize(input_mean, input_std)
data_length = 1
train_loader = torch.utils.data.DataLoader(
TSNDataSet(args.root_path, args.train_list, num_segments=args.num_segments,
image_tmpl=prefix,
transform=torchvision.transforms.Compose([
train_augmentation,
Stack(roll=False),
ToTorchFormatTensor(div=True),
normalize,
]), dense_sample=args.dense_sample,
dataset=args.dataset,
partial_fcvid_eval=args.partial_fcvid_eval,
partial_ratio=args.partial_ratio,
random_crop=args.random_crop,
center_crop=args.center_crop,
ada_crop_list=args.ada_crop_list,
rescale_to=args.rescale_to,
save_meta=args.save_meta),
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True,
drop_last=True) # prevent something not % n_GPU
val_loader = torch.utils.data.DataLoader(
TSNDataSet(args.root_path, args.val_list, num_segments=args.num_segments,
image_tmpl=prefix,
random_shift=False,
transform=torchvision.transforms.Compose([
GroupScale(int(scale_size)),
GroupCenterCrop(crop_size),
Stack(roll=False),
ToTorchFormatTensor(div=True),
normalize,
]), dense_sample=args.dense_sample,
dataset=args.dataset,
partial_fcvid_eval=args.partial_fcvid_eval,
partial_ratio=args.partial_ratio,
random_crop=args.random_crop,
center_crop=args.center_crop,
ada_crop_list=args.ada_crop_list,
rescale_to=args.rescale_to,
save_meta=args.save_meta
),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
# define loss function (criterion) and optimizer
criterion = torch.nn.CrossEntropyLoss().cuda()
if args.evaluate:
validate(val_loader, model, criterion, 0)
return
if not test_mode:
exp_full_path = setup_log_directory(logger, args.log_dir, args.exp_header)
else:
exp_full_path = None
if not args.ablation:
if not test_mode:
with open(os.path.join(exp_full_path, 'args.txt'), 'w') as f:
f.write(str(args))
tf_writer = SummaryWriter(log_dir=exp_full_path)
else:
tf_writer = None
else:
tf_writer = None
map_record = Recorder()
mmap_record = Recorder()
prec_record = Recorder()
best_train_usage_str = None
best_val_usage_str = None
for epoch in range(args.start_epoch, args.epochs):
# train for one epoch
if not args.skip_training:
set_random_seed(args.random_seed + epoch)
adjust_learning_rate(optimizer, epoch, args.lr_type, args.lr_steps)
train_usage_str = train(train_loader, model, criterion, optimizer, epoch, logger, exp_full_path, tf_writer)
else:
train_usage_str = "No training usage stats (Eval Mode)"
# evaluate on validation set
if (epoch + 1) % args.eval_freq == 0 or epoch == args.epochs - 1:
set_random_seed(args.random_seed)
mAP, mmAP, prec1, val_usage_str, val_gflops = validate(val_loader, model, criterion, epoch, logger,
exp_full_path, tf_writer)
# remember best prec@1 and save checkpoint
map_record.update(mAP)
mmap_record.update(mmAP)
prec_record.update(prec1)
if mmap_record.is_current_best():
best_train_usage_str = train_usage_str
best_val_usage_str = val_usage_str
print('Best mAP: %.3f (epoch=%d)\t\tBest mmAP: %.3f(epoch=%d)\t\tBest Prec@1: %.3f (epoch=%d)' % (
map_record.best_val, map_record.best_at,
mmap_record.best_val, mmap_record.best_at,
prec_record.best_val, prec_record.best_at))
if args.skip_training:
break
if (not args.ablation) and (not test_mode):
tf_writer.add_scalar('acc/test_top1_best', prec_record.best_val, epoch)
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'best_prec1': prec_record.best_val,
# }, mmap_record.is_current_best(), exp_full_path)
}, mmap_record.is_current_best(), exp_full_path, epoch+1)
if use_ada_framework and not test_mode:
print("Best train usage:")
print(best_train_usage_str)
print()
print("Best val usage:")
print(best_val_usage_str)
print("Finished in %.4f seconds\n" % (time.time() - t_start))
def set_random_seed(the_seed):
if args.random_seed >= 0:
np.random.seed(the_seed)
torch.manual_seed(the_seed)
torch.cuda.manual_seed(the_seed)
torch.cuda.manual_seed_all(the_seed)
cudnn.benchmark = False
cudnn.deterministic = True
random.seed(the_seed)
def init_gflops_table():
global gflops_table
gflops_table = {}
default_gflops_table = {}
seg_len = -1
resolution = args.rescale_to
"""get gflops of block even it not using"""
default_block_list = ["base", "conv_2", "conv_3", "conv_4", "conv_5"]
default_case_list = ["cnn", "rnn"]
resize = int(args.rescale_to)
default_gflops_table[str(args.arch) + "base"] = \
get_gflops_params(args.arch, "base", num_class, resolution=resize, case="cnn", seg_len=seg_len)[0]
default_gflops_table[str(args.arch) + "base" + "fc"] = \
get_gflops_params(args.arch, "base_fc", num_class, resolution=resize, case="cnn", seg_len=seg_len)[0]
for _block in default_block_list:
for _case in default_case_list:
default_gflops_table[str(args.arch) + _block + _case] = \
get_gflops_params(args.arch, _block, num_class, resolution=resize, case=_case, hidden_dim = args.hidden_dim if _case is "rnn" else None, seg_len=seg_len)[0]
print(default_gflops_table)
"""add gflops of unusing block to using block"""
start = 0
for using_block in args.block_rnn_list :
gflops_table[str(args.arch) + using_block + "rnn"] = default_gflops_table[str(args.arch) + using_block + "rnn"]
gflops_table[str(args.arch) + using_block + "cnn"] = 0
index = default_block_list.index(using_block)
for j in range(start, index+1):
if j is 0:
gflops_table[str(args.arch) + using_block + "cnn"] = default_gflops_table[str(args.arch) + "base"]
else:
gflops_table[str(args.arch) + using_block + "cnn"] += default_gflops_table[str(args.arch) + default_block_list[j] + "cnn"]
start = index+1
"""get gflops of all pass block"""
gflops_table[str(args.arch) + "basefc"] = default_gflops_table[str(args.arch) + "basefc"]
for last_block in range(start, len(default_block_list)):
name = default_block_list[last_block]
if name is not "base":
gflops_table[str(args.arch) + "basefc"] += default_gflops_table[str(args.arch) + name + "cnn"]
print("gflops_table: from base to ")
for k in gflops_table:
print("%-20s: %.4f GFLOPS" % (k, gflops_table[k]))
def get_gflops_t_tt_vector():
gflops_vec = []
t_vec = []
tt_vec = []
if all([arch_name not in args.arch for arch_name in ["resnet", "mobilenet", "efficientnet", "res3d", "csn"]]):
exit("We can only handle resnet/mobilenet/efficientnet/res3d/csn as backbone, when computing FLOPS")
for using_block in args.block_rnn_list:
gflops_lstm = gflops_table[str(args.arch) + str(using_block) + "rnn"]
the_flops = gflops_table[str(args.arch) + str(using_block) + "cnn"] + gflops_lstm
gflops_vec.append(the_flops)
t_vec.append(1.)
tt_vec.append(1.)
the_flops = gflops_table[str(args.arch) + "basefc"]
gflops_vec.append(the_flops)
t_vec.append(1.)
tt_vec.append(1.)
return gflops_vec, t_vec, tt_vec #ex : (conv_2 skip, conv_3 skip, conv_4 skip, conv_5 skip, all_pass)
def cal_eff(r, all_policy_r):
each_losses = []
# TODO r N * T * (#which block exit, conv2/ conv_3/ conv_4/ conv_5/all)
# r_loss : pass conv_2/ conv_3/ conv_4/ conv_5/ all
gflops_vec, t_vec, tt_vec = get_gflops_t_tt_vector()
t_vec = torch.tensor(t_vec).cuda()
for i in range(1, len(gflops_vec)):
gflops_vec[i] += gflops_vec[i-1]
total_gflops = gflops_vec[-1]
for i in range(len(gflops_vec)):
gflops_vec[i] = total_gflops - gflops_vec[i]
gflops_vec[-1] += 0.00001
if args.use_gflops_loss:
r_loss = torch.tensor(gflops_vec).cuda()
else:
r_loss = torch.tensor([4., 2., 1., 0.5, 0.25]).cuda()[:r.shape[2]]
loss = torch.sum(torch.mean(r, dim=[0, 1]) * r_loss)
each_losses.append(loss.detach().cpu().item())
return loss, each_losses
def reverse_onehot(a):
try:
if args.stop_or_forward:
return np.array(a.sum(axis=1), np.int32)
else:
return np.array([np.where(r > 0.5)[0][0] for r in a])
except Exception as e:
print("error stack:", e)
print(a)
for i, r in enumerate(a):
print(i, r)
return None
def confidence_criterion_loss(criterion, all_policy_r, feat_outs, target):
# all_policy_r B,T,K-1,A
# feat_outs B,T,(K-1)+1,#class
policy_gt_loss = 0
inner_acc_loss = 0
_feat_outs = F.softmax(feat_outs, dim=-1)
_target = target[:,0]
total_cnt = 0.0
total_acc_cnt = 0.0
batch_size = feat_outs.shape[0]
time_length = feat_outs.shape[1]
layer_cnt = feat_outs.shape[2]
for b_i in range(feat_outs.shape[0]):
conf_outs = _feat_outs[b_i,:,:,_target[b_i]]
diff_conf_l = []
for k_i in range(1, layer_cnt):
diff_conf_l.append(conf_outs[:,k_i] - conf_outs[:,k_i-1])
target_pass_bool = torch.stack(diff_conf_l, dim=1) > 0 #T,K-1
target_policy = torch.tensor(target_pass_bool, dtype=torch.long).cuda()
for k_i in range(layer_cnt-1):
total_cnt+=1.0
policy_gt_loss += criterion(all_policy_r[b_i,:,k_i,:], target_policy[:,k_i])
for t_i in range(time_length):
for k_i in range(layer_cnt-1):
total_acc_cnt +=1.0
inner_acc_loss += criterion(feat_outs[:,t_i,k_i,:], _target)
return policy_gt_loss/total_cnt, inner_acc_loss/total_acc_cnt
def get_criterion_loss(criterion, output, target):
return criterion(output, target[:, 0])
def kl_categorical(p_logit, q_logit):
import torch.nn.functional as F
p = F.softmax(p_logit, dim=-1)
_kl = torch.sum(p * (F.log_softmax(p_logit, dim=-1)
- F.log_softmax(q_logit, dim=-1)), 1)
return torch.mean(_kl)
def compute_acc_eff_loss_with_weights(acc_loss, eff_loss, each_losses, epoch):
acc_weight = args.accuracy_weight
eff_weight = args.efficency_weight
return acc_loss * acc_weight, eff_loss * eff_weight, [x * eff_weight for x in each_losses]
def compute_every_losses(r, all_policy_r, acc_loss, epoch):
eff_loss, each_losses = cal_eff(r, all_policy_r)
acc_loss, eff_loss, each_losses = compute_acc_eff_loss_with_weights(acc_loss, eff_loss, each_losses, epoch)
return acc_loss, eff_loss, each_losses
def elastic_list_print(l, limit=8):
if isinstance(l, str):
return l
limit = min(limit, len(l))
l_output = "[%s," % (",".join([str(x) for x in l[:limit // 2]]))
if l.shape[0] > limit:
l_output += "..."
l_output += "%s]" % (",".join([str(x) for x in l[-limit // 2:]]))
return l_output
def compute_exp_decay_tau(epoch):
return args.init_tau * np.exp(args.exp_decay_factor * epoch)
def get_policy_usage_str(r_list, act_dim):
gflops_vec, t_vec, tt_vec = get_gflops_t_tt_vector()
printed_str = ""
rs = np.concatenate(r_list, axis=0)
tmp_cnt = [np.sum(rs[:, :, iii] == 1) for iii in range(rs.shape[2])] #[#all #conv_2 #conv_3 #conv_4 #conv_5]
tmp_total_cnt = rs.shape[0] * rs.shape[1]
gflops = 0
avg_frame_ratio = 0
avg_pred_ratio = 0
used_model_list = []
reso_list = []
prev_pass_cnt = tmp_total_cnt
for action_i in range(rs.shape[2]):
if action_i is 0:
action_str = "pass%d (base) " % (action_i)
else:
action_str = "pass%d (%s)" % (action_i, args.block_rnn_list[action_i-1])
usage_ratio = tmp_cnt[action_i] / tmp_total_cnt
printed_str += "%-22s: %6d (%.2f%%)" % (action_str, tmp_cnt[action_i], 100 * usage_ratio)
printed_str += "\n"
gflops += usage_ratio * gflops_vec[action_i]
avg_frame_ratio = usage_ratio * t_vec[-1]
num_clips = args.num_segments
printed_str += "GFLOPS: %.6f AVG_FRAMES: %.3f " % (gflops, avg_frame_ratio * num_clips)
return printed_str, gflops
def extra_each_loss_str(each_terms):
loss_str_list = ["gf"]
s = ""
for i in range(len(loss_str_list)):
s += " %s:(%.4f)" % (loss_str_list[i], each_terms[i].avg)
return s
def get_current_temperature(num_epoch):
if args.exp_decay:
tau = compute_exp_decay_tau(num_epoch)
else:
tau = args.init_tau
return tau
def get_average_meters(number):
return [AverageMeter() for _ in range(number)]
def update_weights(epoch, acc, eff):
if args.use_weight_decay:
exp_decay_factor = np.log(float(acc)/0.8)/float(args.epochs)
acc = 0.8 * np.exp(exp_decay_factor * epoch)
eff = 1 - acc
return acc, eff
def train(train_loader, model, criterion, optimizer, epoch, logger, exp_full_path, tf_writer):
batch_time, data_time, losses, top1, top5 = get_average_meters(5)
tau = 0
if use_ada_framework:
tau = get_current_temperature(epoch)
if args.use_conf_btw_blocks:
alosses, elosses, inner_alosses, policy_gt_losses, early_exit_losses = get_average_meters(5)
else:
alosses, elosses = get_average_meters(2)
each_terms = get_average_meters(NUM_LOSSES)
r_list = []
meta_offset = -2 if args.save_meta else 0
model.module.partialBN(not args.no_partialbn)
model.train()
end = time.time()
print("#%s# lr:%.4f\ttau:%.4f" % (
args.exp_header, optimizer.param_groups[-1]['lr'] * 0.1, tau if use_ada_framework else 0))
accuracy_weight, efficiency_weight = update_weights(epoch, args.accuracy_weight, args.efficency_weight)
accumulation_steps = args.repeat_batch
total_loss = 0
for i, input_tuple in enumerate(train_loader):
data_time.update(time.time() - end)
target = input_tuple[1].cuda()
target_var = torch.autograd.Variable(target)
input = input_tuple[0]
if args.stop_or_forward:
input_var_list = [torch.autograd.Variable(input_item) for input_item in input_tuple[:-1 + meta_offset]]
if args.use_conf_btw_blocks:
output, r, all_policy_r, feat_outs, early_stop_r, exit_r_t = model(input=input_var_list, tau=tau)
else:
output, r, all_policy_r, feat_outs, base_outs, _ = model(input=input_var_list, tau=tau)
acc_loss = get_criterion_loss(criterion, output, target_var)
acc_loss, eff_loss, each_losses = compute_every_losses(r, all_policy_r, acc_loss, epoch)
acc_loss = acc_loss/args.accuracy_weight * accuracy_weight
eff_loss = eff_loss/args.efficency_weight* efficiency_weight
alosses.update(acc_loss.item(), input.size(0))
elosses.update(eff_loss.item(), input.size(0))
for l_i, each_loss in enumerate(each_losses):
each_terms[l_i].update(each_loss, input.size(0))
loss = acc_loss + eff_loss
if args.use_conf_btw_blocks:
policy_gt_loss, inner_aloss= confidence_criterion_loss(criterion, all_policy_r, feat_outs, target_var)
policy_gt_loss = efficiency_weight * policy_gt_loss
inner_aloss = accuracy_weight * inner_aloss
inner_alosses.update(inner_aloss.item(), input.size(0))
policy_gt_losses.update(policy_gt_loss.item(), input.size(0))
loss = loss + policy_gt_loss + inner_aloss
else:
input_var = torch.autograd.Variable(input)
output = model(input=[input_var])
loss = get_criterion_loss(criterion, output, target_var)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target[:, 0], topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
# compute gradient and do SGD step
loss = loss / accumulation_steps
loss.backward()
if (i+1) % accumulation_steps == 0:
if args.clip_gradient is not None:
clip_grad_norm_(model.parameters(), args.clip_gradient)
optimizer.step()
optimizer.zero_grad()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if use_ada_framework:
r_list.append(r.detach().cpu().numpy())
if i % args.print_freq == 0:
print_output = ('Epoch:[{0:02d}][{1:03d}/{2:03d}] '
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'{data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f}) '
'Prec@1 {top1.val:.3f} ({top1.avg:.3f}) '
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})\t'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5)) # TODO
if use_ada_framework:
roh_r = reverse_onehot(r[-1, :, :].detach().cpu().numpy())
if args.use_conf_btw_blocks:
print_output += '\n a_l {aloss.val:.4f} ({aloss.avg:.4f})\t e_l {eloss.val:.4f} ({eloss.avg:.4f})\t i_a_l {inner_aloss.val:.4f} ({inner_aloss.avg:.4f})\t p_g_l {p_g_loss.val:.4f} ({p_g_loss.avg:.4f})\tr {r} pick {pick}'.format(
aloss=alosses, eloss=elosses, inner_aloss=inner_alosses, p_g_loss=policy_gt_losses, r=elastic_list_print(roh_r), pick = np.count_nonzero(roh_r == len(args.block_rnn_list)+1)
)
else:
print_output += '\n a_l {aloss.val:.4f} ({aloss.avg:.4f})\t e_l {eloss.val:.4f} ({eloss.avg:.4f})\t r {r} pick {pick}'.format(
aloss=alosses, eloss=elosses, r=elastic_list_print(roh_r), pick = np.count_nonzero(roh_r == len(args.block_rnn_list)+1)
)
print_output += extra_each_loss_str(each_terms)
if args.show_pred:
print_output += elastic_list_print(output[-1, :].detach().cpu().numpy())
print(print_output)
if use_ada_framework:
usage_str, gflops = get_policy_usage_str(r_list, len(args.block_rnn_list)+1)
print(usage_str)
if tf_writer is not None:
tf_writer.add_scalar('loss/train', losses.avg, epoch)
tf_writer.add_scalar('acc/train_top1', top1.avg, epoch)
tf_writer.add_scalar('acc/train_top5', top5.avg, epoch)
tf_writer.add_scalar('lr', optimizer.param_groups[-1]['lr'], epoch)
return usage_str if use_ada_framework else None
def validate(val_loader, model, criterion, epoch, logger, exp_full_path, tf_writer=None):
batch_time, losses, top1, top5 = get_average_meters(4)
tau = 0
all_results = []
all_targets = []
all_local = {"TN":0, "FN":0, "FP":0, "TP":0}
all_all_preds = []
i_dont_need_bb = True
if args.visual_log != '':
try:
if not(os.path.isdir(args.visual_log)):
os.makedirs(ospj(args.visual_log))
visual_log_path = args.visual_log
if args.stop_or_forward :
visual_log_txt_path = ospj(visual_log_path, "sof_visual_log.txt")
else:
visual_log_txt_path = ospj(visual_log_path, "visual_log.txt")
visual_log = open(visual_log_txt_path, "w")
except OSError as e:
if e.errno != errno.EEXIST:
print("Failed to create directory!!!")
raise
if args.cnt_log != '':
try:
if not(os.path.isdir(args.cnt_log)):
os.makedirs(ospj(args.cnt_log))
cnt_log_path = args.cnt_log
if args.stop_or_forward :
cnt_log_txt_path = ospj(cnt_log_path, "sof_cnt_log.txt")
else:
cnt_log_txt_path = ospj(cnt_log_path, "cnt_log.txt")
cnt_log = open(cnt_log_txt_path, "w")
input_result_dict = {}
total_cnt_dict = {}
target_dict = {}
except OSError as e:
if e.errno != errno.EEXIST:
print("Failed to create directory!!!")
raise
if use_ada_framework:
tau = get_current_temperature(epoch)
if args.use_conf_btw_blocks:
alosses, elosses, inner_alosses, policy_gt_losses, early_exit_losses = get_average_meters(5)
else:
alosses, elosses = get_average_meters(2)
each_terms = get_average_meters(NUM_LOSSES)
r_list = []
if args.save_meta:
name_list = []
indices_list = []
meta_offset = -1 if args.save_meta else 0
# switch to evaluate mode
model.eval()
end = time.time()
accuracy_weight, efficiency_weight = update_weights(epoch, args.accuracy_weight, args.efficency_weight)
accumulation_steps = args.repeat_batch
total_loss = 0
with torch.no_grad():
for i, input_tuple in enumerate(val_loader):
target = input_tuple[1].cuda()
input = input_tuple[0]
# compute output
if args.stop_or_forward:
local_target = input_tuple[2].cuda()
if args.use_conf_btw_blocks :
output, r, all_policy_r, feat_outs, early_stop_r, exit_r_t = model(input=input_tuple[:-1 + meta_offset], tau=tau)
else:
output, r, all_policy_r, feat_outs, base_outs, _ = model(input=input_tuple[:-1 + meta_offset], tau=tau)
acc_loss = get_criterion_loss(criterion, output, target)
acc_loss, eff_loss, each_losses = compute_every_losses(r, all_policy_r, acc_loss, epoch)
acc_loss = acc_loss/args.accuracy_weight * accuracy_weight
eff_loss = eff_loss/args.efficency_weight* efficiency_weight
alosses.update(acc_loss.item(), input.size(0))
elosses.update(eff_loss.item(), input.size(0))
for l_i, each_loss in enumerate(each_losses):
each_terms[l_i].update(each_loss, input.size(0))
loss = acc_loss + eff_loss
if args.use_conf_btw_blocks:
policy_gt_loss, inner_aloss= confidence_criterion_loss(criterion, all_policy_r, feat_outs, target)
policy_gt_loss = efficiency_weight * policy_gt_loss
inner_aloss = accuracy_weight * inner_aloss
inner_alosses.update(inner_aloss.item(), input.size(0))
policy_gt_losses.update(policy_gt_loss.item(), input.size(0))
loss = loss + policy_gt_loss + inner_aloss
else:
output = model(input=[input])
loss = get_criterion_loss(criterion, output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target[:, 0], topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
if args.cnt_log != '':
target_vals = target.cpu().numpy()
output_vals = output.max(dim=1)[1].cpu().numpy()
for i in range(len(target_vals)):
target_val = target_vals[i][0]
output_val = output_vals[i]
input_path = os.path.join(args.root_path, input_tuple[meta_offset-1][i])
if input_path in input_result_dict:
if target_val == output_val:
input_result_dict[input_path] +=1
total_cnt_dict[input_path] +=1
else:
input_result_dict[input_path] = 1 if target_val == output_val else 0
total_cnt_dict[input_path] = 1
target_dict[input_path] = output_val
if args.visual_log != '':
target_val = target.cpu().numpy()[0][0]
output_val = output.max(dim=1)[1].cpu().numpy()[0]
loc_target_val = local_target.cpu().numpy()[0]
loc_output_val = r[:,:,-1].cpu().numpy()[0]
input_path_list = list()
image_tmpl='image_{:05d}.jpg'
for seg_ind in input_tuple[meta_offset][0]:
input_path_list.append(os.path.join(args.root_path, input_tuple[meta_offset-1][0], image_tmpl.format(int(seg_ind))))
if target_val == output_val :
print("True")
visual_log.write("\nTrue")
else :
print("False")
visual_log.write("\nFalse")
print('input path list')
print(input_path_list[0])
print('target')
print(target_val)
print('output')
print(output_val)
print('r')
print('loc_target')
print(loc_target_val)
print('loc_output')
print(loc_output_val)
for i in range(1):
print(reverse_onehot(r[i, :, :].cpu().numpy()))
#visual_log.write('\ninput path list: ')
for i in range(len(input_path_list)):
visual_log.write('\n')
visual_log.write(input_path_list[i])
visual_log.write('\n')
visual_log.write(str(target_val))
visual_log.write('\n')
visual_log.write(str(output_val))
visual_log.write('\n')
visual_log.write(str(loc_target_val))
visual_log.write('\n')
visual_log.write(str(loc_output_val))
visual_log.write('\n')
for i in range(1):
visual_log.writelines(str(reverse_onehot(r[i, :, :].cpu().numpy())))
visual_log.write('\n')
all_results.append(output)
all_targets.append(target)
if args.stop_or_forward:
total_loc = (local_target+2*r[:,:,-1]).cpu().numpy()# (0,1) + 2*(0,1) =? TN:0 FN:1 FP:2 TP:3
all_local['TN'] += np.count_nonzero(total_loc == 0)
all_local['FN'] += np.count_nonzero(total_loc == 1)
all_local['FP'] += np.count_nonzero(total_loc == 2)
all_local['TP'] += np.count_nonzero(total_loc == 3)
if not i_dont_need_bb:
for bb_i in range(len(all_bb_results)):
all_bb_results[bb_i].append(base_outs[:, bb_i])
if args.save_meta and args.save_all_preds:
all_all_preds.append(all_preds)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target[:, 0], topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if use_ada_framework:
r_list.append(r.cpu().numpy())
if i % args.print_freq == 0:
print_output = ('Test: [{0:03d}/{1:03d}] '
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f}) '
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})\t'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
if use_ada_framework:
roh_r = reverse_onehot(r[-1, :, :].detach().cpu().numpy())
if args.use_conf_btw_blocks:
print_output += '\n a_l {aloss.val:.4f} ({aloss.avg:.4f})\t e_l {eloss.val:.4f} ({eloss.avg:.4f})\t i_a_l {inner_aloss.val:.4f} ({inner_aloss.avg:.4f})\t p_g_l {p_g_loss.val:.4f} ({p_g_loss.avg:.4f})\tr {r} pick {pick}'.format(aloss=alosses, eloss=elosses, inner_aloss=inner_alosses, p_g_loss=policy_gt_losses, r=elastic_list_print(roh_r), pick = np.count_nonzero(roh_r == len(args.block_rnn_list)+1)
)
else:
print_output += '\n a_l {aloss.val:.4f} ({aloss.avg:.4f})\t e_l {eloss.val:.4f} ({eloss.avg:.4f})\t r {r} pick {pick}'.format(
aloss=alosses, eloss=elosses, r=elastic_list_print(roh_r), pick = np.count_nonzero(roh_r == len(args.block_rnn_list)+1)
)
#TN:0 FN:1 FP:2 TP:3
print_output += extra_each_loss_str(each_terms)
print_output += '\n location TP:{}, FP:{}, FN:{} ,TN: {} \t'.format(
all_local['TP'], all_local['FP'], all_local['FN'], all_local['TN']
)
print(print_output)
mAP, _ = cal_map(torch.cat(all_results, 0).cpu(),
torch.cat(all_targets, 0)[:, 0:1].cpu())
mmAP, _ = cal_map(torch.cat(all_results, 0).cpu(), torch.cat(all_targets, 0).cpu())
print('Testing: mAP {mAP:.3f} mmAP {mmAP:.3f} Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Loss {loss.avg:.5f}'
.format(mAP=mAP, mmAP=mmAP, top1=top1, top5=top5, loss=losses))
if not i_dont_need_bb:
bbmmaps = []
bbprec1s = []
all_targets_cpu = torch.cat(all_targets, 0).cpu()
for bb_i in range(len(all_bb_results)):
bb_results_cpu = torch.mean(torch.cat(all_bb_results[bb_i], 0), dim=1).cpu()
bb_i_mmAP, _ = cal_map(bb_results_cpu, all_targets_cpu)
bbmmaps.append(bb_i_mmAP)
bbprec1, = accuracy(bb_results_cpu, all_targets_cpu[:, 0], topk=(1,))
bbprec1s.append(bbprec1)
print("bbmmAP: " + " ".join(["{0:.3f}".format(bb_i_mmAP) for bb_i_mmAP in bbmmaps]))
print("bb_Acc: " + " ".join(["{0:.3f}".format(bbprec1) for bbprec1 in bbprec1s]))
gflops = 0
if use_ada_framework:
usage_str, gflops = get_policy_usage_str(r_list, len(args.block_rnn_list)+1)
print(usage_str)
if tf_writer is not None:
tf_writer.add_scalar('loss/test', losses.avg, epoch)
tf_writer.add_scalar('acc/test_top1', top1.avg, epoch)
tf_writer.add_scalar('acc/test_top5', top5.avg, epoch)
if args.cnt_log != '':
for k,v in input_result_dict.items():
cnt_log.write(str(k))
cnt_log.write(',')