forked from tinygrad/tinygrad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
abstractions2.py
119 lines (86 loc) · 3.92 KB
/
abstractions2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# tinygrad is a tensor library, and as a tensor library it has multiple parts
# 1. a "runtime". this allows buffer management, compilation, and running programs
# 2. a "Device" that uses the runtime but specifies compute in an abstract way for all
# 3. a "LazyBuffer" that fuses the compute into kernels, using memory only when needed
# 4. a "Tensor" that provides an easy to use frontend with autograd ".backward()"
print("******** first, the runtime ***********")
from tinygrad.runtime.ops_clang import ClangProgram, ClangCompiler, MallocAllocator
# allocate some buffers
out = MallocAllocator.alloc(4)
a = MallocAllocator.alloc(4)
b = MallocAllocator.alloc(4)
# load in some values (little endian)
MallocAllocator._copyin(a, memoryview(bytearray([2,0,0,0])))
MallocAllocator._copyin(b, memoryview(bytearray([3,0,0,0])))
# compile a program to a binary
lib = ClangCompiler().compile("void add(int *out, int *a, int *b) { out[0] = a[0] + b[0]; }")
# create a runtime for the program (ctypes.CDLL)
fxn = ClangProgram("add", lib)
# run the program
fxn(out, a, b)
# check the data out
print(val := MallocAllocator._as_buffer(out).cast("I").tolist()[0])
assert val == 5
print("******** second, the Device ***********")
DEVICE = "CLANG" # NOTE: you can change this!
import struct
from tinygrad.dtype import dtypes
from tinygrad.device import Buffer, Device
from tinygrad.ops import UOp, Ops
from tinygrad.shape.shapetracker import ShapeTracker
# allocate some buffers + load in values
out = Buffer(DEVICE, 1, dtypes.int32).allocate()
a = Buffer(DEVICE, 1, dtypes.int32).allocate().copyin(memoryview(bytearray(struct.pack("I", 2))))
b = Buffer(DEVICE, 1, dtypes.int32).allocate().copyin(memoryview(bytearray(struct.pack("I", 3))))
# NOTE: a._buf is the same as the return from MallocAllocator.alloc
# describe the computation
buf_1 = UOp(Ops.DEFINE_GLOBAL, dtypes.int32.ptr(), (), 1)
buf_2 = UOp(Ops.DEFINE_GLOBAL, dtypes.int32.ptr(), (), 2)
ld_1 = UOp(Ops.LOAD, dtypes.int32, (buf_1, ShapeTracker.from_shape((1,)).to_uop()))
ld_2 = UOp(Ops.LOAD, dtypes.int32, (buf_2, ShapeTracker.from_shape((1,)).to_uop()))
alu = ld_1 + ld_2
output_buf = UOp(Ops.DEFINE_GLOBAL, dtypes.int32.ptr(), (), 0)
st_0 = UOp(Ops.STORE, dtypes.void, (output_buf, ShapeTracker.from_shape((1,)).to_uop(), alu))
s = UOp(Ops.SINK, dtypes.void, (st_0,))
# convert the computation to a "linearized" format (print the format)
from tinygrad.engine.realize import get_kernel, CompiledRunner
kernel = get_kernel(Device[DEVICE].renderer, s).linearize()
# compile a program (and print the source)
fxn = CompiledRunner(kernel.to_program())
print(fxn.p.src)
# NOTE: fxn.clprg is the ClangProgram
# run the program
fxn.exec([out, a, b])
# check the data out
assert out.as_buffer().cast('I')[0] == 5
print("******** third, the LazyBuffer ***********")
from tinygrad.engine.lazy import LazyBuffer
from tinygrad.engine.realize import run_schedule
from tinygrad.engine.schedule import create_schedule
# allocate some values + load in values
a = LazyBuffer.metaop(Ops.EMPTY, (1,), dtypes.int32, DEVICE)
b = LazyBuffer.metaop(Ops.EMPTY, (1,), dtypes.int32, DEVICE)
a.buffer.allocate().copyin(memoryview(bytearray(struct.pack("I", 2))))
b.buffer.allocate().copyin(memoryview(bytearray(struct.pack("I", 3))))
del a.srcs
del b.srcs
# describe the computation
out = a.alu(Ops.ADD, b)
# schedule the computation as a list of kernels
sched = create_schedule([out])
for si in sched: print(si.ast.op) # NOTE: the first two convert it to CLANG
# DEBUGGING: print the compute ast
print(sched[-1].ast)
# NOTE: sched[-1].ast is the same as st_0 above
# run that schedule
run_schedule(sched)
# check the data out
assert out.realized is not None and out.realized.as_buffer().cast('I')[0] == 5
print("******** fourth, the Tensor ***********")
from tinygrad import Tensor
a = Tensor([2], dtype=dtypes.int32, device=DEVICE)
b = Tensor([3], dtype=dtypes.int32, device=DEVICE)
out = a + b
# check the data out
print(val:=out.item())
assert val == 5