forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
901 lines (733 loc) · 35.6 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
#include "arg.h"
#include "common.h"
#include "console.h"
#include "log.h"
#include "sampling.h"
#include "llama.h"
#include <cassert>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
#include <signal.h>
#include <unistd.h>
#elif defined (_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <signal.h>
#endif
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
static llama_context ** g_ctx;
static llama_model ** g_model;
static common_sampler ** g_smpl;
static common_params * g_params;
static std::vector<llama_token> * g_input_tokens;
static std::ostringstream * g_output_ss;
static std::vector<llama_token> * g_output_tokens;
static bool is_interacting = false;
static bool need_insert_eot = false;
static void print_usage(int argc, char ** argv) {
(void) argc;
LOG("\nexample usage:\n");
LOG("\n text generation: %s -m your_model.gguf -p \"I believe the meaning of life is\" -n 128\n", argv[0]);
LOG("\n chat (conversation): %s -m your_model.gguf -p \"You are a helpful assistant\" -cnv\n", argv[0]);
LOG("\n");
}
static bool file_exists(const std::string & path) {
std::ifstream f(path.c_str());
return f.good();
}
static bool file_is_empty(const std::string & path) {
std::ifstream f;
f.exceptions(std::ifstream::failbit | std::ifstream::badbit);
f.open(path.c_str(), std::ios::in | std::ios::binary | std::ios::ate);
return f.tellg() == 0;
}
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
static void sigint_handler(int signo) {
if (signo == SIGINT) {
if (!is_interacting && g_params->interactive) {
is_interacting = true;
need_insert_eot = true;
} else {
console::cleanup();
LOG("\n");
common_perf_print(*g_ctx, *g_smpl);
// make sure all logs are flushed
LOG("Interrupted by user\n");
common_log_pause(common_log_main());
_exit(130);
}
}
}
#endif
static std::string chat_add_and_format(struct llama_model * model, std::vector<common_chat_msg> & chat_msgs, const std::string & role, const std::string & content) {
common_chat_msg new_msg{role, content};
auto formatted = common_chat_format_single(model, g_params->chat_template, chat_msgs, new_msg, role == "user");
chat_msgs.push_back({role, content});
LOG_DBG("formatted: '%s'\n", formatted.c_str());
return formatted;
}
int main(int argc, char ** argv) {
common_params params;
g_params = ¶ms;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_MAIN, print_usage)) {
return 1;
}
common_init();
auto & sparams = params.sampling;
// save choice to use color for later
// (note for later: this is a slightly awkward choice)
console::init(params.simple_io, params.use_color);
atexit([]() { console::cleanup(); });
if (params.logits_all) {
LOG_ERR("************\n");
LOG_ERR("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
LOG_ERR("************\n\n");
return 0;
}
if (params.embedding) {
LOG_ERR("************\n");
LOG_ERR("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
LOG_ERR("************\n\n");
return 0;
}
if (params.n_ctx != 0 && params.n_ctx < 8) {
LOG_WRN("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
params.n_ctx = 8;
}
if (params.rope_freq_base != 0.0) {
LOG_WRN("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
}
if (params.rope_freq_scale != 0.0) {
LOG_WRN("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
}
LOG_INF("%s: llama backend init\n", __func__);
llama_backend_init();
llama_numa_init(params.numa);
llama_model * model = nullptr;
llama_context * ctx = nullptr;
common_sampler * smpl = nullptr;
std::vector<common_chat_msg> chat_msgs;
g_model = &model;
g_ctx = &ctx;
g_smpl = &smpl;
// load the model and apply lora adapter, if any
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
common_init_result llama_init = common_init_from_params(params);
model = llama_init.model;
ctx = llama_init.context;
if (model == NULL) {
LOG_ERR("%s: error: unable to load model\n", __func__);
return 1;
}
LOG_INF("%s: llama threadpool init, n_threads = %d\n", __func__, (int) params.cpuparams.n_threads);
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU));
auto * ggml_threadpool_new_fn = (decltype(ggml_threadpool_new) *) ggml_backend_reg_get_proc_address(reg, "ggml_threadpool_new");
auto * ggml_threadpool_free_fn = (decltype(ggml_threadpool_free) *) ggml_backend_reg_get_proc_address(reg, "ggml_threadpool_free");
struct ggml_threadpool_params tpp_batch =
ggml_threadpool_params_from_cpu_params(params.cpuparams_batch);
struct ggml_threadpool_params tpp =
ggml_threadpool_params_from_cpu_params(params.cpuparams);
set_process_priority(params.cpuparams.priority);
struct ggml_threadpool * threadpool_batch = NULL;
if (!ggml_threadpool_params_match(&tpp, &tpp_batch)) {
threadpool_batch = ggml_threadpool_new_fn(&tpp_batch);
if (!threadpool_batch) {
LOG_ERR("%s: batch threadpool create failed : n_threads %d\n", __func__, tpp_batch.n_threads);
return 1;
}
// Start the non-batch threadpool in the paused state
tpp.paused = true;
}
struct ggml_threadpool * threadpool = ggml_threadpool_new_fn(&tpp);
if (!threadpool) {
LOG_ERR("%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
return 1;
}
llama_attach_threadpool(ctx, threadpool, threadpool_batch);
const int n_ctx_train = llama_n_ctx_train(model);
const int n_ctx = llama_n_ctx(ctx);
if (n_ctx > n_ctx_train) {
LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx);
}
// print chat template example in conversation mode
if (params.conversation) {
if (params.enable_chat_template) {
LOG_INF("%s: chat template example:\n%s\n", __func__, common_chat_format_example(model, params.chat_template).c_str());
} else {
LOG_INF("%s: in-suffix/prefix is specified, chat template will be disabled\n", __func__);
}
}
// print system information
{
LOG_INF("\n");
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
LOG_INF("\n");
}
std::string path_session = params.path_prompt_cache;
std::vector<llama_token> session_tokens;
if (!path_session.empty()) {
LOG_INF("%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
if (!file_exists(path_session)) {
LOG_INF("%s: session file does not exist, will create.\n", __func__);
} else if (file_is_empty(path_session)) {
LOG_INF("%s: The session file is empty. A new session will be initialized.\n", __func__);
} else {
// The file exists and is not empty
session_tokens.resize(n_ctx);
size_t n_token_count_out = 0;
if (!llama_state_load_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
LOG_ERR("%s: failed to load session file '%s'\n", __func__, path_session.c_str());
return 1;
}
session_tokens.resize(n_token_count_out);
LOG_INF("%s: loaded a session with prompt size of %d tokens\n", __func__, (int)session_tokens.size());
}
}
const bool add_bos = llama_add_bos_token(model);
if (!llama_model_has_encoder(model)) {
GGML_ASSERT(!llama_add_eos_token(model));
}
LOG_DBG("n_ctx: %d, add_bos: %d\n", n_ctx, add_bos);
std::vector<llama_token> embd_inp;
{
auto prompt = (params.conversation && params.enable_chat_template && !params.prompt.empty())
? chat_add_and_format(model, chat_msgs, "system", params.prompt) // format the system prompt in conversation mode
: params.prompt;
if (params.interactive_first || !params.prompt.empty() || session_tokens.empty()) {
LOG_DBG("tokenize the prompt\n");
embd_inp = common_tokenize(ctx, prompt, true, true);
} else {
LOG_DBG("use session tokens\n");
embd_inp = session_tokens;
}
LOG_DBG("prompt: \"%s\"\n", prompt.c_str());
LOG_DBG("tokens: %s\n", string_from(ctx, embd_inp).c_str());
}
// Should not run without any tokens
if (embd_inp.empty()) {
if (add_bos) {
embd_inp.push_back(llama_token_bos(model));
LOG_WRN("embd_inp was considered empty and bos was added: %s\n", string_from(ctx, embd_inp).c_str());
} else {
LOG_ERR("input is empty\n");
return -1;
}
}
// Tokenize negative prompt
if ((int) embd_inp.size() > n_ctx - 4) {
LOG_ERR("%s: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
return 1;
}
// debug message about similarity of saved session, if applicable
size_t n_matching_session_tokens = 0;
if (!session_tokens.empty()) {
for (llama_token id : session_tokens) {
if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) {
break;
}
n_matching_session_tokens++;
}
if (params.prompt.empty() && n_matching_session_tokens == embd_inp.size()) {
LOG_INF("%s: using full prompt from session file\n", __func__);
} else if (n_matching_session_tokens >= embd_inp.size()) {
LOG_INF("%s: session file has exact match for prompt!\n", __func__);
} else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
LOG_WRN("%s: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
__func__, n_matching_session_tokens, embd_inp.size());
} else {
LOG_INF("%s: session file matches %zu / %zu tokens of prompt\n",
__func__, n_matching_session_tokens, embd_inp.size());
}
// remove any "future" tokens that we might have inherited from the previous session
llama_kv_cache_seq_rm(ctx, -1, n_matching_session_tokens, -1);
}
LOG_DBG("recalculate the cached logits (check): embd_inp.size() %zu, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu\n",
embd_inp.size(), n_matching_session_tokens, embd_inp.size(), session_tokens.size());
// if we will use the cache for the full prompt without reaching the end of the cache, force
// reevaluation of the last token to recalculate the cached logits
if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() && session_tokens.size() > embd_inp.size()) {
LOG_DBG("recalculate the cached logits (do): session_tokens.resize( %zu )\n", embd_inp.size() - 1);
session_tokens.resize(embd_inp.size() - 1);
}
// number of tokens to keep when resetting context
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) {
params.n_keep = (int)embd_inp.size();
} else {
params.n_keep += add_bos; // always keep the BOS token
}
if (params.conversation) {
params.interactive_first = true;
}
// enable interactive mode if interactive start is specified
if (params.interactive_first) {
params.interactive = true;
}
if (params.verbose_prompt) {
LOG_INF("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
for (int i = 0; i < (int) embd_inp.size(); i++) {
LOG_INF("%6d -> '%s'\n", embd_inp[i], common_token_to_piece(ctx, embd_inp[i]).c_str());
}
if (params.n_keep > add_bos) {
LOG_INF("%s: static prompt based on n_keep: '", __func__);
for (int i = 0; i < params.n_keep; i++) {
LOG_CNT("%s", common_token_to_piece(ctx, embd_inp[i]).c_str());
}
LOG_CNT("'\n");
}
LOG_INF("\n");
}
// ctrl+C handling
{
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
struct sigaction sigint_action;
sigint_action.sa_handler = sigint_handler;
sigemptyset (&sigint_action.sa_mask);
sigint_action.sa_flags = 0;
sigaction(SIGINT, &sigint_action, NULL);
#elif defined (_WIN32)
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
};
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
#endif
}
if (params.interactive) {
LOG_INF("%s: interactive mode on.\n", __func__);
if (!params.antiprompt.empty()) {
for (const auto & antiprompt : params.antiprompt) {
LOG_INF("Reverse prompt: '%s'\n", antiprompt.c_str());
if (params.verbose_prompt) {
auto tmp = common_tokenize(ctx, antiprompt, false, true);
for (int i = 0; i < (int) tmp.size(); i++) {
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str());
}
}
}
}
if (params.input_prefix_bos) {
LOG_INF("Input prefix with BOS\n");
}
if (!params.input_prefix.empty()) {
LOG_INF("Input prefix: '%s'\n", params.input_prefix.c_str());
if (params.verbose_prompt) {
auto tmp = common_tokenize(ctx, params.input_prefix, true, true);
for (int i = 0; i < (int) tmp.size(); i++) {
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str());
}
}
}
if (!params.input_suffix.empty()) {
LOG_INF("Input suffix: '%s'\n", params.input_suffix.c_str());
if (params.verbose_prompt) {
auto tmp = common_tokenize(ctx, params.input_suffix, false, true);
for (int i = 0; i < (int) tmp.size(); i++) {
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str());
}
}
}
}
smpl = common_sampler_init(model, sparams);
if (!smpl) {
LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__);
return 1;
}
LOG_INF("sampler seed: %u\n", common_sampler_get_seed(smpl));
LOG_INF("sampler params: \n%s\n", sparams.print().c_str());
LOG_INF("sampler chain: %s\n", common_sampler_print(smpl).c_str());
LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
// group-attention state
// number of grouped KV tokens so far (used only if params.grp_attn_n > 1)
int ga_i = 0;
const int ga_n = params.grp_attn_n;
const int ga_w = params.grp_attn_w;
if (ga_n != 1) {
GGML_ASSERT(ga_n > 0 && "grp_attn_n must be positive"); // NOLINT
GGML_ASSERT(ga_w % ga_n == 0 && "grp_attn_w must be a multiple of grp_attn_n"); // NOLINT
//GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of grp_attn_w"); // NOLINT
//GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * grp_attn_n"); // NOLINT
LOG_INF("self-extend: n_ctx_train = %d, grp_attn_n = %d, grp_attn_w = %d\n", n_ctx_train, ga_n, ga_w);
}
LOG_INF("\n");
if (params.interactive) {
const char * control_message;
if (params.multiline_input) {
control_message = " - To return control to the AI, end your input with '\\'.\n"
" - To return control without starting a new line, end your input with '/'.\n";
} else {
control_message = " - Press Return to return control to the AI.\n"
" - To return control without starting a new line, end your input with '/'.\n"
" - If you want to submit another line, end your input with '\\'.\n";
}
LOG_INF("== Running in interactive mode. ==\n");
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
LOG_INF( " - Press Ctrl+C to interject at any time.\n");
#endif
LOG_INF( "%s\n", control_message);
is_interacting = params.interactive_first;
}
bool is_antiprompt = false;
bool input_echo = true;
bool display = true;
bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < embd_inp.size();
int n_past = 0;
int n_remain = params.n_predict;
int n_consumed = 0;
int n_session_consumed = 0;
std::vector<int> input_tokens; g_input_tokens = &input_tokens;
std::vector<int> output_tokens; g_output_tokens = &output_tokens;
std::ostringstream output_ss; g_output_ss = &output_ss;
std::ostringstream assistant_ss; // for storing current assistant message, used in conversation mode
// the first thing we will do is to output the prompt, so set color accordingly
console::set_display(console::prompt);
display = params.display_prompt;
std::vector<llama_token> embd;
// tokenized antiprompts
std::vector<std::vector<llama_token>> antiprompt_ids;
antiprompt_ids.reserve(params.antiprompt.size());
for (const std::string & antiprompt : params.antiprompt) {
antiprompt_ids.emplace_back(::common_tokenize(ctx, antiprompt, false, true));
}
if (llama_model_has_encoder(model)) {
int enc_input_size = embd_inp.size();
llama_token * enc_input_buf = embd_inp.data();
if (llama_encode(ctx, llama_batch_get_one(enc_input_buf, enc_input_size))) {
LOG_ERR("%s : failed to eval\n", __func__);
return 1;
}
llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
if (decoder_start_token_id == -1) {
decoder_start_token_id = llama_token_bos(model);
}
embd_inp.clear();
embd_inp.push_back(decoder_start_token_id);
}
while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
// predict
if (!embd.empty()) {
// Note: (n_ctx - 4) here is to match the logic for commandline prompt handling via
// --prompt or --file which uses the same value.
int max_embd_size = n_ctx - 4;
// Ensure the input doesn't exceed the context size by truncating embd if necessary.
if ((int) embd.size() > max_embd_size) {
const int skipped_tokens = (int) embd.size() - max_embd_size;
embd.resize(max_embd_size);
console::set_display(console::error);
LOG_WRN("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
console::set_display(console::reset);
}
if (ga_n == 1) {
// infinite text generation via context shifting
// if we run out of context:
// - take the n_keep first tokens from the original prompt (via n_past)
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
if (n_past + (int) embd.size() >= n_ctx) {
if (!params.ctx_shift){
LOG_DBG("\n\n%s: context full and context shift is disabled => stopping\n", __func__);
break;
}
if (params.n_predict == -2) {
LOG_DBG("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
break;
}
const int n_left = n_past - params.n_keep;
const int n_discard = n_left/2;
LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
n_past, n_left, n_ctx, params.n_keep, n_discard);
llama_kv_cache_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard);
llama_kv_cache_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard);
n_past -= n_discard;
LOG_DBG("after swap: n_past = %d\n", n_past);
LOG_DBG("embd: %s\n", string_from(ctx, embd).c_str());
LOG_DBG("clear session path\n");
path_session.clear();
}
} else {
// context extension via Self-Extend
while (n_past >= ga_i + ga_w) {
const int ib = (ga_n*ga_i)/ga_w;
const int bd = (ga_w/ga_n)*(ga_n - 1);
const int dd = (ga_w/ga_n) - ib*bd - ga_w;
LOG_DBG("\n");
LOG_DBG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i, n_past, ib*bd, ga_i + ib*bd, n_past + ib*bd);
LOG_DBG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n, (ga_i + ib*bd)/ga_n, (ga_i + ib*bd + ga_w)/ga_n);
LOG_DBG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i + ib*bd + ga_w, n_past + ib*bd, dd, ga_i + ib*bd + ga_w + dd, n_past + ib*bd + dd);
llama_kv_cache_seq_add(ctx, 0, ga_i, n_past, ib*bd);
llama_kv_cache_seq_div(ctx, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n);
llama_kv_cache_seq_add(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd);
n_past -= bd;
ga_i += ga_w/ga_n;
LOG_DBG("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", n_past + bd, n_past, ga_i);
}
}
// try to reuse a matching prefix from the loaded session instead of re-eval (via n_past)
if (n_session_consumed < (int) session_tokens.size()) {
size_t i = 0;
for ( ; i < embd.size(); i++) {
if (embd[i] != session_tokens[n_session_consumed]) {
session_tokens.resize(n_session_consumed);
break;
}
n_past++;
n_session_consumed++;
if (n_session_consumed >= (int) session_tokens.size()) {
++i;
break;
}
}
if (i > 0) {
embd.erase(embd.begin(), embd.begin() + i);
}
}
for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
int n_eval = (int) embd.size() - i;
if (n_eval > params.n_batch) {
n_eval = params.n_batch;
}
LOG_DBG("eval: %s\n", string_from(ctx, embd).c_str());
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval))) {
LOG_ERR("%s : failed to eval\n", __func__);
return 1;
}
n_past += n_eval;
LOG_DBG("n_past = %d\n", n_past);
// Display total tokens alongside total time
if (params.n_print > 0 && n_past % params.n_print == 0) {
LOG_DBG("\n\033[31mTokens consumed so far = %d / %d \033[0m\n", n_past, n_ctx);
}
}
if (!embd.empty() && !path_session.empty()) {
session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
n_session_consumed = session_tokens.size();
}
}
embd.clear();
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
// optionally save the session on first sample (for faster prompt loading next time)
if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) {
need_to_save_session = false;
llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
LOG_DBG("saved session to %s\n", path_session.c_str());
}
const llama_token id = common_sampler_sample(smpl, ctx, -1);
common_sampler_accept(smpl, id, /* accept_grammar= */ true);
// LOG_DBG("last: %s\n", string_from(ctx, smpl->prev.to_vector()).c_str());
embd.push_back(id);
// echo this to console
input_echo = true;
// decrement remaining sampling budget
--n_remain;
LOG_DBG("n_remain: %d\n", n_remain);
} else {
// some user input remains from prompt or interaction, forward it to processing
LOG_DBG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
while ((int) embd_inp.size() > n_consumed) {
embd.push_back(embd_inp[n_consumed]);
// push the prompt in the sampling context in order to apply repetition penalties later
// for the prompt, we don't apply grammar rules
common_sampler_accept(smpl, embd_inp[n_consumed], /* accept_grammar= */ false);
++n_consumed;
if ((int) embd.size() >= params.n_batch) {
break;
}
}
}
// display text
if (input_echo && display) {
for (auto id : embd) {
const std::string token_str = common_token_to_piece(ctx, id, params.special);
// Console/Stream Output
LOG("%s", token_str.c_str());
// Record Displayed Tokens To Log
// Note: Generated tokens are created one by one hence this check
if (embd.size() > 1) {
// Incoming Requested Tokens
input_tokens.push_back(id);
} else {
// Outgoing Generated Tokens
output_tokens.push_back(id);
output_ss << token_str;
}
}
}
// reset color to default if there is no pending user input
if (input_echo && (int) embd_inp.size() == n_consumed) {
console::set_display(console::reset);
display = true;
}
// if not currently processing queued inputs;
if ((int) embd_inp.size() <= n_consumed) {
// check for reverse prompt in the last n_prev tokens
if (!params.antiprompt.empty()) {
const int n_prev = 32;
const std::string last_output = common_sampler_prev_str(smpl, ctx, n_prev);
is_antiprompt = false;
// Check if each of the reverse prompts appears at the end of the output.
// If we're not running interactively, the reverse prompt might be tokenized with some following characters
// so we'll compensate for that by widening the search window a bit.
for (std::string & antiprompt : params.antiprompt) {
size_t extra_padding = params.interactive ? 0 : 2;
size_t search_start_pos = last_output.length() > static_cast<size_t>(antiprompt.length() + extra_padding)
? last_output.length() - static_cast<size_t>(antiprompt.length() + extra_padding)
: 0;
if (last_output.find(antiprompt, search_start_pos) != std::string::npos) {
if (params.interactive) {
is_interacting = true;
}
is_antiprompt = true;
break;
}
}
// check for reverse prompt using special tokens
llama_token last_token = common_sampler_last(smpl);
for (std::vector<llama_token> ids : antiprompt_ids) {
if (ids.size() == 1 && last_token == ids[0]) {
if (params.interactive) {
is_interacting = true;
}
is_antiprompt = true;
break;
}
}
if (is_antiprompt) {
LOG_DBG("found antiprompt: %s\n", last_output.c_str());
}
}
// deal with end of generation tokens in interactive mode
if (llama_token_is_eog(model, common_sampler_last(smpl))) {
LOG_DBG("found an EOG token\n");
if (params.interactive) {
if (!params.antiprompt.empty()) {
// tokenize and inject first reverse prompt
const auto first_antiprompt = common_tokenize(ctx, params.antiprompt.front(), false, true);
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
is_antiprompt = true;
}
if (params.enable_chat_template) {
chat_add_and_format(model, chat_msgs, "assistant", assistant_ss.str());
}
is_interacting = true;
LOG("\n");
}
}
// if current token is not EOG, we add it to current assistant message
if (params.conversation) {
const auto id = common_sampler_last(smpl);
assistant_ss << common_token_to_piece(ctx, id, false);
}
if (n_past > 0 && is_interacting) {
LOG_DBG("waiting for user input\n");
if (params.conversation) {
LOG("\n> ");
}
if (params.input_prefix_bos) {
LOG_DBG("adding input prefix BOS token\n");
embd_inp.push_back(llama_token_bos(model));
}
std::string buffer;
if (!params.input_prefix.empty() && !params.conversation) {
LOG_DBG("appending input prefix: '%s'\n", params.input_prefix.c_str());
LOG("%s", params.input_prefix.c_str());
}
// color user input only
console::set_display(console::user_input);
display = params.display_prompt;
std::string line;
bool another_line = true;
do {
another_line = console::readline(line, params.multiline_input);
buffer += line;
} while (another_line);
// done taking input, reset color
console::set_display(console::reset);
display = true;
// Add tokens to embd only if the input buffer is non-empty
// Entering a empty line lets the user pass control back
if (buffer.length() > 1) {
// append input suffix if any
if (!params.input_suffix.empty() && !params.conversation) {
LOG_DBG("appending input suffix: '%s'\n", params.input_suffix.c_str());
LOG("%s", params.input_suffix.c_str());
}
LOG_DBG("buffer: '%s'\n", buffer.c_str());
const size_t original_size = embd_inp.size();
if (params.escape) {
string_process_escapes(buffer);
}
bool format_chat = params.conversation && params.enable_chat_template;
std::string user_inp = format_chat
? chat_add_and_format(model, chat_msgs, "user", std::move(buffer))
: std::move(buffer);
// TODO: one inconvenient of current chat template implementation is that we can't distinguish between user input and special tokens (prefix/postfix)
const auto line_pfx = common_tokenize(ctx, params.input_prefix, false, true);
const auto line_inp = common_tokenize(ctx, user_inp, false, format_chat);
const auto line_sfx = common_tokenize(ctx, params.input_suffix, false, true);
LOG_DBG("input tokens: %s\n", string_from(ctx, line_inp).c_str());
// if user stop generation mid-way, we must add EOT to finish model's last response
if (need_insert_eot && format_chat) {
llama_token eot = llama_token_eot(model);
embd_inp.push_back(eot == -1 ? llama_token_eos(model) : eot);
need_insert_eot = false;
}
embd_inp.insert(embd_inp.end(), line_pfx.begin(), line_pfx.end());
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
embd_inp.insert(embd_inp.end(), line_sfx.begin(), line_sfx.end());
for (size_t i = original_size; i < embd_inp.size(); ++i) {
const llama_token token = embd_inp[i];
output_tokens.push_back(token);
output_ss << common_token_to_piece(ctx, token);
}
// reset assistant message
assistant_ss.str("");
n_remain -= line_inp.size();
LOG_DBG("n_remain: %d\n", n_remain);
} else {
LOG_DBG("empty line, passing control back\n");
}
input_echo = false; // do not echo this again
}
if (n_past > 0) {
if (is_interacting) {
common_sampler_reset(smpl);
}
is_interacting = false;
}
}
// end of generation
if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !(params.interactive)) {
LOG(" [end of text]\n");
break;
}
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
// We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size).
if (params.interactive && n_remain <= 0 && params.n_predict >= 0) {
n_remain = params.n_predict;
is_interacting = true;
}
}
if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) {
LOG("\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str());
llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
}
LOG("\n\n");
common_perf_print(ctx, smpl);
common_sampler_free(smpl);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
ggml_threadpool_free_fn(threadpool);
ggml_threadpool_free_fn(threadpool_batch);
return 0;
}