-
Notifications
You must be signed in to change notification settings - Fork 1
/
generate_block.m
183 lines (140 loc) · 3.26 KB
/
generate_block.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
function [MPC_step] = generate_block( N, nx, nu, ny, nc , max_iter, constr_viol_tol, dual_inf_tol, verbose)
import casadi.*
%%%
% Declare parameters
%%%
% System dynamics
A = MX.sym('A',nx,nx);
B = MX.sym('B',nx,nu);
C = MX.sym('C',ny,nx);
D = MX.sym('D',ny,nu);
% Weights
Q = MX.sym('Q',nx,nx);
R = MX.sym('R',nu,nu);
% Intial state constraint
x0 = MX.sym('x0',nx);
%Simple bounds
lb_x = MX.sym('lb_x',nx);
ub_x = MX.sym('ub_x',nx);
lb_u = MX.sym('lb_u',nu);
ub_u = MX.sym('ub_u',nu);
% Linear constraints
H_x = MX.sym('H_x',nc,nx);
H_u = MX.sym('H_u',nc,nu);
lb_h = MX.sym('lb_h',nc);
ub_h = MX.sym('ub_h',nc);
p = {A,B,C,D,Q,R,x0,lb_x,ub_x,lb_u,ub_u,H_x,H_u,lb_h,ub_h};
%%%
% Build objective and constraints expression
%
% min f(x,p)
% x
%
% s.t. lbg <= g(x,p) <= ubg
% lbx <= x <= ubx
%%%
% State for k=0
x = MX.sym('x',nx);
% Objective (will be added to)
f = x'*Q*x;
% Decision variables
w = {x};
% Bounds on decision variables
lbx = {x0};
ubx = {x0};
% Constraints
g = {};
% Bounds on constraints
lbg = [];
ubg = [];
for k=1:N
u = MX.sym('u',nu); % Control for k
w{end+1} = u;
lbx{end+1} = lb_u;
ubx{end+1} = ub_u;
f = f + u'*R*u;
x_plus = MX.sym('x',nx); % State for k+1
w{end+1} = x_plus;
lbx{end+1} = lb_x;
ubx{end+1} = ub_x;
f = f + x_plus'*Q*x_plus;
% Dynamic constraints
g{end+1} = A*x+B*u-x_plus;
lbg{end+1} = zeros(nx,1);
ubg{end+1} = zeros(nx,1);
% path constraints
g{end+1} = H_x*x+H_u*u;
lbg{end+1} = lb_h;
ubg{end+1} = ub_h;
% Pass to next k
x = x_plus;
end
% Make tall flattened vectors
g = vertcat(g{:});
lbg = vertcat(lbg{:});
ubg = vertcat(ubg{:});
w = vertcat(w{:});
lbx = vertcat(lbx{:});
ubx = vertcat(ubx{:});
%%%
% Construct QP solver
%%%
qp_struct = struct;
qp_struct.f = f;
qp_struct.g = g;
qp_struct.x = w;
qp_struct.p = veccat(p{:});
options = struct;
options.max_iter = max_iter;
options.constr_viol_tol = constr_viol_tol;
options.dual_inf_tol = dual_inf_tol;
options.print_iter = verbose;
options.print_time = verbose;
options.print_info = verbose;
options.print_header = verbose;
solver = qpsol('solver','qrqp',qp_struct,options);
%%%
% Call QP solver symbolically
%%%
x0 = MX.sym('x_initial',size(w,1),1);
lam_x0 = MX.sym('lam_x_initial',size(w,1),1);
lam_g0 = MX.sym('lam_g_initial',size(g,1),1);
arg_struct = struct;
arg_struct.x0 = x0;
arg_struct.lam_x0 = lam_x0;
arg_struct.lam_g0 = lam_g0;
arg_struct.lbx = lbx;
arg_struct.ubx = ubx;
arg_struct.lbg = lbg;
arg_struct.ubg = ubg;
arg_struct.p = qp_struct.p;
res_struct = solver.call(arg_struct);
xsol = res_struct.x;
out = {xsol(nx+1:nx+nu),res_struct.f,res_struct.x,res_struct.lam_x,res_struct.lam_g};
out_names = {'u_next','f','x','lam_x','lam_g'};
p = {p{:} x0 lam_x0 lam_g0};
p_names = cell(numel(p),1);
for i=1:numel(p)
p_names{i} = name(p{i});
end
%%%
% Create a Function out of it
%%%
MPC_step = Function('MPC_step',p,out,p_names,out_names);
%%%
% Generate code
%%%
cg_options = struct;
cg_options.casadi_real = 'real_T';
cg_options.casadi_int = 'int_T';
cg_options.with_header = true;
cg_options.real_min = num2str(realmin('double'));
if verbose
cg_options.verbose_runtime = true;
end
cg = CodeGenerator('MPC_step.c',cg_options);
cg.add_include('simstruc.h');
cg.add(MPC_step);
cg.generate();
mex -DCASADI_PRINTF=ssPrintf LMPC.c MPC_step.c
end