-
Notifications
You must be signed in to change notification settings - Fork 23
/
RouteChannelSediment.c
executable file
·436 lines (371 loc) · 15.1 KB
/
RouteChannelSediment.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
/*
* SUMMARY: RouteChannelSediment
* USAGE:
* * AUTHOR: Edwin P. Maurer
* ORG: University of Washington, Department of Civil Engineering
* E-MAIL: dhsvm@hydro.washington.edu
* ORIG-DATE: Sep-02
* Last Change: Thu Jun 19 09:27:02 2003 by Ed Maurer <edm@u.washington.edu>
* DESCRIPTION:
* DESCRIP-END.
* FUNCTIONS: main()
* COMMENTS:
*/
/******************************************************************************/
/* INCLUDES */
/******************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "constants.h"
#include "data.h"
#include "functions.h"
#include "DHSVMChannel.h"
#include "DHSVMerror.h"
/*****************************************************************************
InitChannelSediment)
Assign initial colluvium mass to each unique channel ID (amount
of storage, kg)
*****************************************************************************/
int InitChannelSediment(Channel * Head, AGGREGATED * Total)
{
if (Head != NULL){
Channel *Current = NULL;
int i;
float InitialDepth = 0.010; /* initial depth of sediment in the channel, m */
float bulkporosity, initvol;
bulkporosity = 0.245+0.14*pow((double)DEBRISd50,-0.21); /* Komura, 1961 relation */
/* Assign the storages to the correct IDs */
Current = Head;
while (Current) {
initvol = Current->length * InitialDepth * Current->class2->width;
for(i=0;i<NSEDSIZES;i++) {
Current->sediment.mass[i] =
initvol*(1.-bulkporosity)*((float) PARTDENSITY)*(1./((float) NSEDSIZES));
Current->sediment.debrisinflow[i]=0.0;
Current->sediment.overlandinflow[i]=0.0;
Current->sediment.overroadinflow[i]=0.0;
Current->sediment.inflowrate[i]=0.0;
Current->sediment.last_inflowrate[i]=0.0;
Current->sediment.outflow[i]=0.0;
Current->sediment.last_outflow[i]=0.0;
Current->sediment.outflowrate[i]=0.0;
Current->sediment.last_outflowrate[i]=0.0;
Total->ChannelSedimentStorage += Current->sediment.mass[i];
}
Current = Current->next;
}
}
return (0);
}
/*****************************************************************************
InitChannelSedInflow
Assign initial colluvium mass to each unique channel ID (amount
of storage, kg)
*****************************************************************************/
int InitChannelSedInflow(Channel * Head)
{
if (Head != NULL){
Channel *Current = NULL;
int i;
Current = Head;
while (Current) {
for(i=0;i<NSEDSIZES;i++) {
Current->sediment.inflow[i] = 0.0;
}
Current->sediment.outflowconc = 0.0;
Current->sediment.totalmass = 0.;
Current = Current->next;
}
}
return (0);
}
/*****************************************************************************
SaveChannelSedInflow
For FinalMassBalance output
*****************************************************************************/
int SaveChannelSedInflow(Channel * Head, AGGREGATED * Total)
{
if (Head != NULL){
Channel *Current = NULL;
int i;
Current = Head;
while (Current) {
for(i=0;i<NSEDSIZES;i++) {
Total->DebrisInflow += Current->sediment.debrisinflow[i];
Current->sediment.debrisinflow[i] = 0.;
Total->SedimentOverlandInflow += Current->sediment.overlandinflow[i];
Current->sediment.overlandinflow[i] = 0.;
Total->SedimentOverroadInflow += Current->sediment.overroadinflow[i];
Current->sediment.overroadinflow[i] = 0.;
}
Current = Current->next;
}
}
return (0);
}
/*****************************************************************************
RouteChannelSediment()
Read in DHSVM sediment mass and inflows for each channel segment, and
route sediment downstream. Sorts by particle size, transports finer material
first, as done by Williams (1980).
*****************************************************************************/
void RouteChannelSediment(Channel * Head, TIMESTRUCT Time,
DUMPSTRUCT *Dump, AGGREGATED * Total,
float *SedDiams)
{
Channel *Current = NULL;
float DS,DT_sed,numinc;
float flowdepth,Qavg,V,dIdt,dOdt,dMdt;
float minDT_sed,TotalCapacityUp,TotalCapacityDown;
float lateral_sed_inflow_rate;
float TotalCapacity, CapacityUsed;
float Qup,Qdown;
float phi=0.55, theta=0.55,term3,term4; /*space and time weighting factors*/
int i,tstep;
int order;
int order_count;
float mass_error, sediment_mass_adjust, error_count;
/* the next 5 lines are from channel_route_network - used to order streams */
for (order = 1;; order += 1) {
order_count = 0;
Current = Head;
while (Current != NULL) {
if (Current->order == order) {
CapacityUsed = 0.0;
/* rate of inflow and outflow change over model time step*/
dIdt = (Current->inflow - Current->last_inflow)/(float) Time.Dt;
dOdt = (Current->outflow - Current->last_outflow)/(float) Time.Dt;
/****************************************/
/* Estimate sub-time step for the reach */
/****************************************/
minDT_sed = 3600.;
/* Estimate flow velocity from discharge using manning's equation. */
Qavg = (Current->inflow+Current->outflow)/(2.0*(float) Time.Dt);
/* If there is no flow (true for roads), move on to the next segment */
if(Qavg > 0){
if(Current->slope>0.0) {
flowdepth = pow(Qavg*Current->class2->friction/(Current->class2->width*sqrt(Current->slope)),0.6);
V = Qavg/(flowdepth*Current->class2->width);
}
else V=0.01;
if(Current->length/V < minDT_sed) minDT_sed = 1.0*Current->length/V;
numinc = (float) ceil((double)Time.Dt/minDT_sed);
if(numinc<1) numinc=1;
DT_sed = (float) Time.Dt/numinc;
/* Initialize sediment.outflow for this segment
and calculate inflow from upstream reach */
for(i=0;i<NSEDSIZES;i++) {
Current->sediment.outflow[i]=0.0;
Current->sediment.inflowrate[i] = Current->sediment.inflow[i]/(float) Time.Dt;
}
/****************************************/
/* Loop for each sub-timestep */
/****************************************/
for(tstep=0;tstep<numinc;tstep++) {
CapacityUsed=0.0;
Qup = Current->last_inflow + dIdt*tstep*DT_sed;
Qdown = Current->last_outflow + dOdt*tstep*DT_sed;
/****************************************/
/* Loop for each particle size */
/****************************************/
/*DO NOT USE BAGNOLD's EQ. FOR D<0.015 mm - this is wash load anyway*/
for(i=0;i<NSEDSIZES;i++) {
DS = SedDiams[i]*((float) MMTOM); /* convert from mm to m */
dMdt=0;
/* lateral inflow for the reach per second kg/s */
lateral_sed_inflow_rate = (Current->sediment.debrisinflow[i] +
Current->sediment.overlandinflow[i] +
Current->sediment.overroadinflow[i])/(float) Time.Dt;
/****************************************/
/* Find rate of bed change and new mass */
/****************************************/
/* Set theta to 1.0 to prevent instabilities during mass wasting inflow */
if(Current->sediment.debrisinflow[i]>0)
theta=1.0;
/* Set theta to 1.0 to prevent instabilities during large differences
between current and previous steps */
if(Current->sediment.inflowrate[i]>0 || Current->sediment.last_inflowrate[i]>0 ){
if(abs(1-Current->sediment.last_inflowrate[i]/Current->sediment.inflowrate[i])>0.75 || abs(1-Current->sediment.inflowrate[i]/Current->sediment.last_inflowrate[i])>0.75 || abs(1-Current->sediment.outflowrate[i]/Current->sediment.inflowrate[i])>0.7 )
theta = 1.0;
else theta = 0.55; /* this should be .55 */
}
else theta=1.0;
mass_error = 1.;
error_count = 0;
while(abs(mass_error) > 0.1){
if(error_count > 0)
theta = 1.;
/* TotalCapacity is in kg/s */
if(SedDiams[i] < 0.062) { /* per Wicks and Bathurst, wash load */
TotalCapacity =
Current->sediment.inflowrate[i]+Current->sediment.mass[i]/DT_sed;
}
else {
TotalCapacityUp = CalcBagnold(DS,&Time,Qup,Current->class2->width,
Current->class2->friction,Current->slope);
TotalCapacityDown = CalcBagnold(DS,&Time,Qdown,Current->class2->width,
Current->class2->friction,Current->slope);
TotalCapacity=phi*TotalCapacityDown + (1.0-phi)*TotalCapacityUp;
TotalCapacity -= CapacityUsed; /* Avoid mult use of streampower */
}
if(TotalCapacity<=0) TotalCapacity=0.0;
if(TotalCapacity*DT_sed > Current->sediment.mass[i]) {
dMdt= -Current->sediment.mass[i]/DT_sed;
Current->sediment.mass[i] = 0.;
}
else {
dMdt =-TotalCapacity;
Current->sediment.mass[i] -= TotalCapacity*DT_sed;
}
/****************************************/
/* Calculate reach sed outflow rate */
/****************************************/
/* limit it to the total available sediment transport capacity */
term3 = (1.-theta) *
(Current->sediment.last_outflowrate[i] -
Current->sediment.last_inflowrate[i]);
term4 = theta * Current->sediment.inflowrate[i];
Current->sediment.outflowrate[i] =
(1./theta)*(lateral_sed_inflow_rate-dMdt-term3+term4);
if(Current->sediment.outflowrate[i]<0.0){
Current->sediment.outflowrate[i]=0.0;
}
if(Current->sediment.outflowrate[i]>=TotalCapacity) {
Current->sediment.mass[i] +=
(Current->sediment.outflowrate[i]-TotalCapacity)*DT_sed;
mass_error=(lateral_sed_inflow_rate+Current->sediment.inflowrate[i]
-dMdt-Current->sediment.outflowrate[i])*DT_sed;
dMdt += Current->sediment.outflowrate[i]-TotalCapacity;
Current->sediment.outflowrate[i]=TotalCapacity;
if(abs(mass_error) > 0.1){
sediment_mass_adjust = (dMdt-(Current->sediment.inflowrate[i] +
lateral_sed_inflow_rate -
Current->sediment.outflowrate[i]))*DT_sed;
Current->sediment.mass[i]-=sediment_mass_adjust;
mass_error = (lateral_sed_inflow_rate+Current->sediment.inflowrate[i] -
dMdt-Current->sediment.outflowrate[i])*DT_sed;
dMdt = lateral_sed_inflow_rate+Current->sediment.inflowrate[i] -
Current->sediment.outflowrate[i];
}
}
mass_error = (lateral_sed_inflow_rate+Current->sediment.inflowrate[i] -
dMdt-Current->sediment.outflowrate[i])*DT_sed;
error_count++;
if (error_count>2)
break;
}
if (error_count>2){
printf("Warning: Unable to reduce mass error below specified level\n in RouteChannelSediment");
}
/****************************************/
/* Assign new values to next step old */
/****************************************/
Current->sediment.last_outflowrate[i]=Current->sediment.outflowrate[i];
Current->sediment.last_inflowrate[i]=Current->sediment.inflowrate[i];
/****************************************/
/* Accumulate reach sed outflow mass */
/****************************************/
Current->sediment.outflow[i] += Current->sediment.outflowrate[i]*DT_sed;
CapacityUsed += Current->sediment.outflowrate[i];
} /* close loop for each sediment size */
} /* end of sub-time step loop */
for(i=0;i<NSEDSIZES;i++) {
/* pass the sediment mass outflow to the next downstream reach */
if(Current->outlet != NULL){
Current->outlet->sediment.inflow[i] += Current->sediment.last_outflow[i];
Current->sediment.last_outflow[i] = Current->sediment.outflow[i];
/* Needed for last time step to balance mass */
Total->ChannelSuspendedSediment += Current->sediment.outflow[i];
}
/* If no stream segment outlet, there is a road sink or a basin outlet.
Track this for the sediment mass balance. */
else{
Total->SedimentOutflow += Current->sediment.outflow[i];
}
Total->ChannelSedimentStorage += Current->sediment.mass[i];
/* For output */
Current->sediment.totalmass += Current->sediment.mass[i];
/* outflow concentration in mg/l */
Current->sediment.outflowconc += 1000.0*Current->sediment.outflow[i]/Current->outflow;
}
} /* end if(Qavg > 0){ */
else {/* if Qvag < 0 */
for(i=0;i<NSEDSIZES;i++) {
Current->sediment.mass[i] += Current->sediment.debrisinflow[i] +
Current->sediment.overlandinflow[i] + Current->sediment.overroadinflow[i];
Total->ChannelSedimentStorage += Current->sediment.mass[i];
/* For output */
Current->sediment.totalmass += Current->sediment.mass[i];
}
}
/* the next 7 lines are from channel_route_network -- closes the loop above */
order_count += 1;
} /* close if statement checking for stream order */
Current = Current->next;
} /* close while statement checking that CURRENT != NULL */
if (order_count == 0)
break;
} /* close loop for the stream order */
}
/*****************************************************************************
RouteCulvertSediment()
*****************************************************************************/
void RouteCulvertSediment(CHANNEL * ChannelData, MAPSIZE * Map,
TOPOPIX ** TopoMap, SEDPIX ** SedMap,
AGGREGATED * Total, float *SedDiams)
{
int x, y;
float CulvertSedFlow; /* culvert flow of sediment, kg */
int i;
Total->CulvertReturnSedFlow = 0.0;
for (y = 0; y < Map->NY; y++) {
for (x = 0; x < Map->NX; x++) {
if (INBASIN(TopoMap[y][x].Mask)) {
for(i=0; i<NSEDSIZES; i++) {
CulvertSedFlow = ChannelCulvertSedFlow(y, x, ChannelData, i);
CulvertSedFlow /= Map->DX * Map->DY;
if (channel_grid_has_channel(ChannelData->stream_map, x, y)) {
/* Percent delivery to streams is conservative and based on particle size */
if (SedDiams[i] <= 0.063){
ChannelData->stream_map[x][y]->channel->sediment.overlandinflow[i] += CulvertSedFlow;
Total->CulvertSedToChannel += CulvertSedFlow;
CulvertSedFlow = 0.;
}
if ((SedDiams[i] > 0.063) && (SedDiams[i] <= 0.5)){
ChannelData->stream_map[x][y]->channel->sediment.overlandinflow[i] += 0.3*CulvertSedFlow;
Total->CulvertSedToChannel += 0.3*CulvertSedFlow;
Total->CulvertReturnSedFlow += 0.7*CulvertSedFlow;
CulvertSedFlow = 0.;
}
if ((SedDiams[i] > 0.5) && (SedDiams[i] <= 2.)){
ChannelData->stream_map[x][y]->channel->sediment.overlandinflow[i] += 0.1*CulvertSedFlow;
Total->CulvertSedToChannel += 0.1*CulvertSedFlow;
Total->CulvertReturnSedFlow += 0.9*CulvertSedFlow;
CulvertSedFlow = 0.;
}
Total->CulvertReturnSedFlow += CulvertSedFlow;
}
else {
Total->CulvertReturnSedFlow += CulvertSedFlow;
}
}
}
}
}
}
/*****************************************************************************
ChannelCulvertSedFlow ()
computes sediment outflow (kg) of channel/road network to a grid cell, if it
contains a sink (sink check is in channel_grid_sed_outflow)
*****************************************************************************/
double ChannelCulvertSedFlow(int y, int x, CHANNEL * ChannelData, int i)
{
if (channel_grid_has_channel(ChannelData->road_map, x, y)){
return channel_grid_sed_outflow(ChannelData->road_map, x, y, i);
}
else {
return 0;
}
}