forked from leopd/SFD_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlivecam.py
executable file
·53 lines (43 loc) · 1.52 KB
/
livecam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import time
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
torch.backends.cudnn.benchmark = True
import os,sys,cv2,random,datetime,time,math
import argparse
import numpy as np
import net_s3fd
from detect_faces import detect_faces
parser = argparse.ArgumentParser(description='PyTorch face detect')
parser.add_argument('--net','-n', default='s3fd', type=str)
parser.add_argument('--model', required=True, type=str)
parser.add_argument('--path', default='CAMERA', type=str)
args = parser.parse_args()
use_cuda = torch.cuda.is_available()
net = getattr(net_s3fd,args.net)()
net.load_state_dict(torch.load(args.model))
net.cuda()
net.eval()
if args.path=='CAMERA':
cap = cv2.VideoCapture(0)
with torch.no_grad():
while(True):
if args.path=='CAMERA':
ret, img = cap.read()
else:
img = cv2.imread(args.path)
imgshow = np.copy(img)
start_time = time.time()
bboxlist = detect_faces(net, img, 3)
print(f"Running detect_faces took {1000*(time.time() - start_time):.1f}ms. Found {len(bboxlist)} faces.")
for b in bboxlist:
x1,y1,x2,y2,s = b
cv2.rectangle(imgshow,(int(x1),int(y1)),(int(x2),int(y2)),(0,255,0),1)
cv2.imshow('test',imgshow)
if args.path=='CAMERA':
if cv2.waitKey(1) & 0xFF == ord('q'): break
else:
cv2.imwrite(args.path[:-4]+'_output.png',imgshow)
if cv2.waitKey(0) or True: break