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Abstract

We present our work to develop a telerobotics research platform that provides complete access to all
levels of control via open-source custom electronics and software. The electronics employs an FPGA
to enable a centralized computation and distributed 1/0 architecture in which all control computations
are implemented in a familiar development environment (Linux PC) and low-latency /O is performed
over an IEEE-1394a (Firewire) bus at speeds up to 400 Mbits/sec. The mechanical components of the
system are provided by the Research Kit for the da Vinci ® System, which consists of the Master Tool
Manipulators (MTMs), Patient Side Manipulators (PSMs), and stereo console of the first-generation
da Vinci surgical robot. This system is currently installed, or planned for installation, at 11 research
institutions, with additional installations likely in the future, thereby creating a research community
around a common open-source hardware and software platform.
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1 Introduction

The prevalence of open source software continues to increase and to enable research in many fields. Med-
ical Image Computing (MIC) is one example, where packages such as the Visualization Toolkit (VTK),
the Insight Toolkit (ITK), 3D Slicer, and many others provide a wealth of algorithms for processing and
visualizing medical images. In comparison, there are fewer open source packages for Computer Assisted
Intervention (CAI). One reason is that CAI systems employ a diversity of hardware platforms, and these
platforms often are either proprietary (closed) commercial systems or custom research systems. Some open
source CAI packages have achieved modest success by supporting commercial devices, such as tracking
systems, that have open interfaces and are relatively widely used in research systems. Examples include the
Image Guided Surgery Toolkit (IGSTK) [3] and our own Surgical Assistant Workstation (SAW) [11, 6].

Within CAl, there are few open platforms for research in medical robotics. We consider specifically the
area of telesurgery, which requires a master input device, preferably with haptic feedback, and a slave (or
patient-side) robot with the ability to actuate surgical instruments. Currently, there are several haptic input
devices with open interfaces, ranging from low-cost systems such as the Phantom Omni and Novint Falcon,
to more costly alternatives. On the slave side, the Raven II research robot [8] was recently disseminated
to several research groups via support from the National Science Foundation (NSF) and is available for
purchase from Applied Dexterity, Inc. (Seattle, WA). The da Vinci Surgical Robot ® (Intuitive Surgical,
Inc., Sunnyvale, CA) can be configured to provide a read-only research interface to both the master and slave
manipulators [2]. While useful for some research projects (e.g., skill assessment), the read-only interface
does not support projects that require external control of the manipulators (e.g., research in autonomous
or semi-autonomous control). Few of the above platforms are open at all levels of control, however. In
particular, only the Raven II enables researchers to modify the real-time servo control code, which runs on
a Linux PC and communicates with the hardware (e.g., motors and encoders) via a USB interface.

We have previously presented the cisst libraries [5, 1, 4], that support both real-time device (robot) control
and real-time computer vision, which are necessary components of telesurgical robot systems. The SAW
package, which is built on cisst, includes components that implement interfaces to many CAI devices,
including tracking systems, haptic input devices, and robots. Use of this software, however, is predicated
on access to the corresponding hardware. In this paper, we describe an “open source mechatronics” system,
consisting of hardware, firmware, and software (see Fig. 1) that is being replicated at multiple institutions.

2 System Design

The primary design goal is to provide a system that enables researchers to easily implement new algorithms
at any level of control. We therefore did not use an off-the-shelf motor controller because it would not allow
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modification of the low-level servo control algorithm. We assume that researchers will be familiar with
a Linux development environment, preferably with either the RT-Preempt patch or a real-time extension
such as Xenomai or RTAI, and therefore focused on a system architecture that enables all software to be

implemented in this environment.

We considered several design ap-
proaches, which can be categorized
based on whether the computation is
centralized (e.g., on the PC) or dis-
tributed (e.g., high-level control on the
PC, low-level control on embedded
processors) and whether the I/0 is cen-
tralized (i.e., all cabling brought back
to the PC) or distributed (i.e., cables
brought to external boards, possibly
inside the robot structure).

The centralized computation and 1/0
architecture was prevalent in the early
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days of robotics, with multiple joint
control boards attached to the com-
puter’s parallel bus (e.g., ISA, Q-Bus,
or VME). This architecture provides
low latency I/O and is still used today,
with I/O boards installed in the PCI or
PCI-Express bus in a PC. Disadvan-
tages of this architecture include: (1)
routing a large bundle of cables be-
tween the robot and control PC, which
often reduces reliability and perfor-
mance (e.g., due to noise), and (2)
powering off and opening the PC to in-
stall the I/O boards, which limits the
flexibility of configuration for research.
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Figure 1: Overview of telerobotic research platform: Mechanical hard-
ware provided by Research Kit for the da Vinci System, electronics by
open-source IEEE-1394 FPGA board coupled with Quad Linear Amplifier
(QLA), and software by open-source cisst/SAW package with ROS inter-
faces.

With the emergence of high-speed serial networks, such as CAN, Ethernet, USB, and IEEE-1394, it became
feasible to physically distribute the I/O to external boards. Placing these components inside or near the robot
arm allows significant cabling reductions because the thick cables containing multiple wires for motor power
and sensor feedback can be replaced by thin network and power cables. But, these systems typically are
examples of distributed computation and 1/0 because they perform low-level servo control on the external
boards. This is often necessary because even with these high-speed networks, it is difficult to get low enough
latency to support servo control at rates of 1 kHz or higher. The disadvantage is that researchers either cannot
modify the low-level control (if implemented on a proprietary product) or must learn the idiosyncrasies of
embedded programming.

Our approach, however, can be called centralized computation and distributed 1I/0 [7]. We achieve this by
designing custom electronics that replace the distributed microprocessors with programmable logic; specif-
ically a field-programmable gate array (FPGA). The FPGA provides direct, low-latency, interfaces between
the high-speed serial network (IEEE-1394a) and the I/O hardware. In this design, the IEEE-1394 link layer
protocol is implemented in the FPGA; see Section 4.3 for further details. This architecture preserves the
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Figure 2: Hardware connection between manipulators, controllers and PCs. Two configurations are shown: (1) one
PC controlling all four manipulators, and (2) two PCs controlling PSM1/MTML and PSM2/MTMR, respectively.

advantages of reduced cabling, while allowing all software to be implemented on a high-performance com-
puter that contains a familiar software development environment. It also enables flexible reconfiguration; for
example, a bimanual teleoperation system (two master robots and two slave robots) can be quickly reconfig-
ured into two independent master/slave systems by disconnecting one IEEE-1394 cable and re-connecting
it to a different computer, as shown in Fig. 2.

3 Mechanical Hardware

The mechanical hardware is provided by the Research
Kit for the da Vinci System (Fig. 3), which consists
of the following components of the first-generation da
Vinci robot system (often called the da Vinci Classic):
two Master Tool Manipulators (MTMs), two Patient
Side Manipulators (PSMs), a High Resolution Stereo
Viewer (HRSV), and a footpedal tray. This kit has
been provided by the manufacturer, Intuitive Surgical,
Inc., to several research groups. The kit does not in-
clude electronics or control software, thereby motivat-
ing the development of a common, open-source elec-
tronics and software platform for this research com-
munity. It also does not include the passive Setup
Joints that support the PSMs, the Endoscopic Camera
Manipulator (ECM), the stereo endoscope, nor any of Figure 3: Research Kit for the da Vinci R) System
the frames or covers.
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4 Electronics

The control electronics is based on two custom boards (Fig. 4): (1) an IEEE-1394 FPGA board, and (2) a
Quad Linear Amplifier (QLA). The schematics, firmware, low-level software interface, and documentation
are available via a public SVN/Trac repository.

4.1 |EEE-1394 FPGA Board

This board contains a Xilinx
Spartan-6 XC6SLX45-2 FPGA,
configuration = PROM,  IEEE-
1394a physical layer (PHY), two
IEEE-1394a 6-pin  connectors,
a low-speed USB interface, and
required power supplies. It con-
tains two 44-pin connectors that
provide power and FPGA I/O to
a companion board, such as the

QLA. It also contains a 16-position
rotary switch for board identification. Figure 4: IEEE-1394 FPGA board and Quad Linear Amplifier (QLA)

Quad Linear Amplifier with heat sink

4.2 Quad Linear Amplifier (QLA)

The Quad Linear Amplifier attaches to the IEEE-1394 FPGA board and provides all hardware required to
control four DC brush motors, using a bridge linear amplifier design (Fig. 5). Each of the four channels
contains the following components:

e One 16-bit digital-to-analog converter (DAC) to enable the FPGA to set the desired motor current.

e Two 16-bit analog-to-digital converters (ADCs) to digitize the measured motor current and an external
analog sensor (e.g., potentiometer).

o Differential receivers for one quadrature encoder with A, B, and Z (index) channels; these signals are
supplied to the FPGA board, which performs the quadrature decoding.

e Two OPA-549 power operational amplifiers (op amps) to provide bi-directional control of a motor
from a single power supply (up to 6.25 Amps at up to 48 Volts).

e Digital inputs for one home and two limit switches; these can also be used as general-purpose inputs.
e One open-collector digital output with high current drive (up to 1 Amp).

The board also contains a software-controlled, normally-open safety relay, which is designed to enable the
software to disable the motor power supply, as well as two sensors that measure the heat sink temperature.
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4.3 FPGA Firmware
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Figure 5: Block diagram of I/O devices

4.3 FPGA Firmware

The adoption of an FPGA as the processing chip on the hardware control nodes is driven by the fact that
it provides a low-latency interface to the hardware, as well as significant computational power via built-
in Digital Signal Processing (DSP) slices. This is crucial for our centralized computation and distributed
I/0 architecture, although one could easily switch to a distributed computation and I/O architecture by
incorporating a microprocessor core in the FPGA or by using the DSP slices to implement the low-level
control algorithms. In general, the FPGA firmware has three major functionalities: (1) responding to read
and write requests from the PC via the 1394 bus, (2) interfacing to I/O devices, and (3) hardware-level safety

checking.

The IEEE-1394 protocol supports two types
of services: isochronous and asynchronous
transfers. In isochronous mode, a packet of
variable length is broadcast on a specified
channel (up to 64 channels) at a guaranteed
8 kHz (125 us) bus cycle. It is ideal for ap-
plications such as audio or video data transfer
that require constant transfer rates but not nec-
essarily data integrity, since there are no ac-
knowledgements. In contrast, asynchronous
transfers deliver a packet to a specific ad-
dress (node id) and require an acknowledge-
ment. If an acknowledgement is missing or
invalid, a retry may be issued. We selected
asynchronous transfers for our application be-
cause they could satisfy our goal of perform-
ing servo control at a 1 kHz rate (or better) and
because the requirement for acknowledgment
packets improves robustness. To save FPGA

Write
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Packet Received
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{Check packet type )
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Read data &
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(Write data to register)

(Send Ack & data packet)

Trigger DAC

Figure 6: FPGA read and write packet processing

gate resources and to simplify implementation, we implement only a subset of the IEEE-1394 link-layer
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protocol. Specifically, our FPGA nodes are not capable of serving as bus master, all transfers much be asyn-
chronous quadlet (32-bit) or block (multiple quadlets) read or write transactions. The lack of a bus master
implementation is not a serious limitation because we can rely on the IEEE-1394 interface in the PC to fill
this role.

Figure 6 summarizes how the FPGA handles read and write transactions. When the FPGA receives a write
packet over the IEEE-1394 bus, it does the following four things: (1) checks the incoming packet’s Cyclic
Redundancy Check (CRC) value and silently drops the packet if the CRC is invalid, (2) generates and sends
an acknowledgement packet, (3) decodes the destination device address and data from the packet, and (4)
writes data to internal resigters and to the different I/O devices. For example, the desired motor current is
shifted out via the Serial Peripheral Interface (SPI) to the DAC. Similarly, to respond to a read request from
the PC, the FPGA latches various I/O device data and sends all requested data back to the PC in a single
block transfer. To avoid latency, the FPGA ensures that all data that could be requested is available in local
registers. For example, because one ADC conversion cycle requires 0.7 us, the FPGA firmware continuously
requests data conversions and stores the result in a register for future read requests.

In addition to the read and write requests to the devices involved in motor control, the FPGA firmware also
supports reading and writing to the configuration PROM that initializes the FPGA. It is therefore possible to
update the firmware vie the IEEE-1394 interface, which provides several advantages: (1) no special JTAG
programming cable is required, (2) no special programming software is required, and (3) it is much faster
than the conventional JTAG programming method (about 20 seconds versus several minutes).

Although the goal of the centralized computation architecture is to enable researchers to implement all
software on the PC, we decided to implement certain safety features directly in the FPGA. This has two
primary advantages: (1) the FPGA is naturally a hardware implementation and thus provides fast response
and reliability, and (2) the safety feature is always active, even if the software crashes or the Firewire cable
becomes disconnected. The current firmware includes two major safety features: a watchdog timer and a
motor current safety check. The watchdog timer provides a range of timeout periods from 1 to 340 ms
(setting the period to O disables the watchdog). If the watchdog is not refreshed during this period (by
writing to the FPGA), it trips and disables all power amplifiers. This safety mechanism is especially useful
to turn off the motors in situations where the PC control software exits or communication is lost. The motor
current safety module is designed to catch cases where the absolute value of the measured motor current is
significantly greater than the commanded motor current, which would indicate a hardware defect.

5 Software

Under the principle of centralized computation and distributed 1/0, all computation including data
read/write, servo loop control and high level robot control are implemented on a Linux PC. This section
introduces the low-level C++ API that interacts with FPGA controllers via IEEE-1394 bus and the high
level robot control software, which also includes interfaces to the Robot Operating System (ROS) [9].

5.1 Low-Level Interface

A low-level C++ library is available to allow direct access to the raw 1/O data in our customized hardware
through the IEEE-1394 bus. This library has no external software dependencies. It uses the 1ibrawl394
library, which is a standard Linux library for communication over IEEE-1394. Other drivers, such as RT-
Fire [12], could be used to obtain hard real-time performance. In prior experiments [10], we discovered that
most of the latency in IEEE-1394 data transfers appears to be due to overhead on the PC. Specifically, we
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Figure 7: Robot tele-operation control architecture with one MTM and one PSM

found that small packets had a latency of about 30-35 usec, whereas the latency for large packets was only
a little larger. Therefore, we determined that to achieve the best performance, we should combine reads and
writes as much as possible. Currently, we combine the read and writes for each individual board, so that for
N boards, we have N reads and N writes. Even better performance could be obtained by combining packets
further; for example, it is relatively straightforward to combine the N writes into a single broadcast packet.

The API consists of two main classes: a FirewirePort class to represent an IEEE-1394 port and an AmpI0
class to represent one FPGA node on the bus. One Firewire port can contain multiple FPGA nodes. In the
real-time control mode, the Firewire port latches all block reads from the FPGA boards into local buffers
on the PC, and then applies the new motor currents to the control boards via block writes. The AmpI0 API
provides a set of functions to extract feedback data, such as encoder positions, from the read buffer, and to
write data, such as desired motor currents and watchdog timer period, into the write buffer. All data formats
in this API are unsigned integers because data are stored as counts (or bits) in FPGA registers. Also, various
I/0O devices in the controller boards expect different data formats; thus the high level control software calling
these API functions is responsible for correctly formatting the data. Besides the basic API, a set of utility
programs are provided to print Firewire port node information and talk directly to the FPGA in raw format.

5.2 Component-Based Control Architecture

We employ a component-based control architecture, using the open-source cisst/SAW libraries available via
a public SVN/Trac repository. As shown in Figure 7, in a tele-operation system with one MTM and one
PSM, the control system contains control components for I/O level read/write, servo control, logical robot
control and a tele-operation control component. In this control architecture, components have well-defined
required and provided interfaces and are inter-connected through these interfaces. The mtsRobotlO1394
component communicates with the hardware directly via the IEEE-1394 bus and provides three interfaces
in this example: PSM1 I/O level interface, MTML I/O level interface and an interface for footpedal events.
The PSM1/MTML mtsPID servo controllers connect to PSM1 and MTML I/O level interfaces, respectively.
Also, the Tele-operation component connects to the footpedal interface and adjusts its control behavior based
on footpedal events. Similarly, the mtsPSM/mtsMTM expose the Cartesian level interfaces and require a joint
level interface from the mtsPID servo loop component.

One challenge for such a component-based approach is data synchronization; this is especially true for servo
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loop control running at high frequency of one kilohertz. If a separate thread is created for each servo control
loop and the I/O component, it is likely that the feedback data used in the servo loop control could be out of
synchronization and potentially affect controller performance. Our solution puts all servo control loops and
the I/0O component in one single thread while keeping the advantage of a component-based approach.

Two types of logical robot, mtsPSM and mtsMTM, have been created to handle forward kinematics, inverse
kinematics, trajectory generation, robot-specific control (e.g. gripper open angle) and most important high
level robot state control. The Master Manipulator has 7 active joints plus one passive gripper with two Hall
effect sensors. The gripper is a separate input device independent of the MTM’s kinematics and needs to
be processed separately in this logical robot component. The Patient-Side Manipulator also has 7 active
joints driven by 7 actuators. Through an adapter, a variety of instruments, such as forceps and scissors, can
be installed onto the PSM to perform different tasks during surgery. The instrument is driven by the last 4
actuators with a cable-driven mechanism. If the instrument mounted on the PSM contains a gripper, it also
requires specialized processing in mtsPSM. Tool adapter and instrument installation require an engagement
procedure involving the last 4 actuators in the logical robot component.

5.3 ROS Interface

ROS (Robot Operating System) provides a communications layer, which eases the communication between
different robot control processes in one computer or across multiple computers [9]. It also provides a set
of libraries and utility tools. To leverage the ROS toolchain and engage developers from the ROS commu-
nity, we developed an interface that publishes the robot state in ROS messages and accepts commands by
subscribing to ROS messages (topics).

The control software discussed above is written using the cisst library. To publish robot information in ROS
messages, synchronized data needs to be sampled, converted to ROS message format, and then published
periodically. Subscribing to messages works similarly, but in the reversed direction; specifically, when a
message is received, ROS invokes a callback function, which must convert the ROS data type to a cisst
data type and then invoke a cisst function (via an mtsFunctionWrite object). Our solution is to use an
independent sawROS library, which is comprised of: (1) a set of global data type conversion functions
(e.g., cisst matrix to ROS geometry_msgs::Transform and vice versa), (2) a cisst publisher that fetches,
converts, and then publishes the data, (3) a cisst subscriber with a ROS subscriber callback function that
converts data and triggers the corresponding cisst write function, and (4) a cisst-to-ROS bridge component
that serves as a container for cisst publishers and subscribers. The bridge runs periodically at a specified
rate (currently, 50 Hz).

In addition, MTM and PSM models have been generated in Unified Robot Description Format (URDF) and
can be used for visualization and simulation. One use case that takes advantage of the above mentioned in-
terface and simulation is to use a real MTM and foot pedal as input devices to tele-operate a simulated PSM.
The cisst-based robot control software controls one MTM and monitors input events from the footpedal. A
cisst-to-ROS bridge component publishes robot joint positions, Cartesian positions and clutch pedal states
and subscribes to the commanded robot Cartesian position. The PSM simulation includes visualization in
Rviz and a kinematics controller. A ROS tele-operation node interfaces with the real MTM and the simulated
PSM and, when the clutch pedal is not pressed, it converts MTM motions into relative PSM motions.

The current cisst-to-ROS interface is adequate in the sense that it provides a bi-directional communication
mechanism between control code in cisst and other ROS nodes. However, a tighter integration is expected
in the future to support events and ROS service calls.
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6 Conclusions

This paper presented a telerobotics research platform that is based on the Research Kit for the da Vinci
System, open-source electronics, and open-source software. This platform is being replicated at several
research institutions — currently 11 sites have either acquired or ordered the platform. Several collaboration
tools have been created to support the user community. Intuitive Surgical has created an information page
for the Research Kit for the da Vinci System. This page links to public SVN/Trac repositories (including
wikis) for the custom electronics and the sawIntuitiveResearchKit component. There is also a Google group,
research-kit-for-davinci, that provides a mailing list.
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