Skip to content

Latest commit

 

History

History
373 lines (289 loc) · 12.1 KB

design.md

File metadata and controls

373 lines (289 loc) · 12.1 KB

Deployment Manager Design

Overview

Deployment Manager is a service which can be run in a Kubernetes cluster that provides a declarative configuration language to describe Kubernetes resources and a mechanism for deploying, updating, and deleting configurations. This document describes the configuration language, object model, and architecture of the service in detail.

Configuration Language

The configuration language in Deployment Manager consists of two parts: a YAML-based language for describing resources, and a templating mechanism for creating abstract parameterizable types.

A configuration consists of a list of resources in YAML. Resources have three properties:

  • name: the name to use when managing the resource
  • type: the type of the resource being managed
  • properties: the configuration properties of the resource

An example snippet of a configuration looks like:

resources:
- name: my-rc
  type: ReplicationController
  properties:
    metadata:
      name: my-rc
    spec:
      replicas: 1
    ...
- name: my-service
  type: Service
  properties:
    ...

References

Resources can reference values from other resources. The version of Deployment Manager running in the Google Cloud Platform uses references to understand dependencies between resources and properly order the operations it performs on a configuration. This version doesn't yet have this functionality, but will have it shortly.

A reference follows this syntax: $(ref.NAME.PATH), where NAME is the name of the resource being referenced, and PATH is a JSON path to the value in the resource object.

For example:

$(ref.my-service.metadata.name)

In this case, my-service is the name of the resource, and metadata.name is the JSON path to the value being referenced.

Configurable Resources

Configurable resources are the primitive resources that can be configured in Deployment Manager, including:

  • Pod
  • ReplicationController
  • Service

Deployment Manager processes configurable resources by passing their configuration properties directly to kubectl on the cluster to create, update, or delete the resource.

Templates

Templates are abstract types that can be created using Python or Jinja. Templates take a set of properties and must output a valid YAML configuration string. Properties are bound to values when a template is instantiated in a configuration.

Templates are expanded as a pre-processing step before configurable resources are processed. They can output configurations containing configurable resources, or additional nested templates. Nested templates will be processed recursively.

An example of a template in python is:

import yaml

def GenerateConfig(context):
  resources = [{
    'name': context.env['name'] + '-service',
    'type': 'Service',
    'properties': {
      'prop1': context.properties['prop1'],
      ...
    }
  }]

  return yaml.dump({'resources': resources})

and in Jinja is:

resources:
- name: {{ env['name'] }}-service
  type: Service
  properties:
    prop1: {{ properties['prop1'] }}
    ...

Templates provide access to several sets of data, which can be used for parameterizing or further customizing a configuration:

  • env: a map of values defined by Deployment Manager, including deployment, name, and type
  • properties: a map of the key/value pairs passed in the properties section when instantiating the template
  • imports: a map of import file name to file contents of all imports originally specified for the configuration

In Python, this data is available from the context object passed into the GenerateConfig method.

Template Schemas

A schema can be provided for a template. The schema describes the template in more details, including:

  • info: more information about the template, including long description and title
  • imports: any sub-imports used by this template (may be relative path or URL)
  • required: properties which are required when instantiating the template
  • properties: JSON Schema descriptions of each property the template accepts

An example of a template schema is:

info:
  title: The Example
  description: A template being used as an example to illustrate concepts.

imports:
- path: helper.py

required:
- prop1

properties:
  prop1:
    description: The first property
    type: string
    default: prop-value

Schemas are used by Deployment Manager to validate properties being used during template instantiation and provide default value semantics on properties.

Schemas must be imported along-side the templates which they describe when passing configuration to Deployment Manager.

Instantiating Templates

Templates can be instantiated in the same way that a configurable resource is used. They can be used in two different ways, either passed to the API as an imported file, or used from a public HTTP endpoint.

Imported Templates

Templates may be imported as part of the target configuration and used directly, for example:

imports:
- path: example.py

resources:
- name: example
  type: example.py
  properties:
    prop1: prop-value

The imports list is not understood by the Deployment Manager service, but is a directive to client-side tooling to specify what additional files should be included when passing a configuration to the API.

Using the Deployment Manager API, these templates can be included in the imports section of the targetConfig.

External Templates

Templates may also be used from a public HTTP endpoint, for example:

resources:
- name: example
  type: https://raw.githubusercontent.com/example/example.py
  properties:
    prop1: prop-value

The service will process external templates as follows:

  1. fetch the external template as an import
  2. attempt to fetch the schema for the template, using .schema as the schema path
  3. repeat for any sub-imports found in the schema file

When fetching schema files and sub-imports, the base path of the external template is used for relative paths.

API Model

Deployment Manager exposes a set of RESTful collections over HTTP/JSON.

Deployments

Deployments are the primary resource in the Deployment Manager service. The inputs to a deployment are:

  • name
  • targetConfig

When creating a deployment, users pass their YAML configuration, as well as any import files (templates, datafiles, etc.) in as the targetConfig.

Creating, updating and deleting a deployment creates a new manifest for the deployment, and then processes the new configuration. In the case of deleting a deployment, the deployment is first updated to an empty manifest containing no resources, and then is removed from the system.

Deployments are available at the HTTP endpoint:

http://manager-service/deployments

Manifests

A manifest is created for a deployment every time it is mutated, including creation, update, and deletion.

A manifest contains three major pieces of data:

  • inputConfig: the original input configuration for the manifest, including YAML configuration and imports
  • expandedConfig: the final expanded configuration to be used when processing resources for the manifest
  • layout: the hierarchical structure of the manifest

Manifests are available at the HTTP endpoint:

http://manager-service/deployments/<deployment>/manifests

Expanded Configuration

Given a new inputConfig, Deployment Manager expands all template instantiations recursively until there is a flat set of configurable resources. This final set is stored as the expandedConfig and is used during resource processing.

Layout

Users can use templates to build a rich, deep hierarchical architecture in their configuration. Expansion flattens this hierarchy and removes the template relationships from the configuration to create a format optimized for the process of instantiating the resources. However, the structural information contained in the original configuration has many uses, so rather than discard it, Deployment Manager preserves it in the form of a layout.

The layout looks very much like an input configuration. It is a YAML list of resources, where each resource contains the following information:

  • name: name of the resource
  • type: type of the resource
  • properties: properties of the resource, set only for templates
  • resources: sub-resources from expansion, set only for templates

An example layout is:

resources:
- name: rs
  type: replicatedservice.py
  propertes:
    replicas: 2
  resources:
  - name: rs-rc
    type: ReplicationController
  - name: rs-service
    type: Service

The layout can be used for visualizing the architecture of resources, including their hierarchical structure and reference relationships.

Types

The types API provides information about existing types being used the cluster.

It can be used to list all known types that are in use in existing deployments:

http://manager-service/types

It can be used to list all active instances of a specific type in the cluster:

http://manager-service/types/<type>/instances

Passing all as the type shows all instances of all types in the cluster. Type instances include the following information:

  • name: name of resource
  • type: type of resource
  • deployment: name of deployment in which the resource resides
  • manifest: name of manifest in which the resource configuration resides
  • path: JSON path to the entry for the resource in the manifest layout

Architecture

The Deployment Manager service is built to run as a service within a Kubernetes cluster. It has three major components to manage deployments. The following diagram illustrates the relationships between the components, which are described in more detail below.

Architecture Diagram

Currently there are two caveats in the design of the service:

  • Synchronous API: the API is currently designed to block on all processing for a deployment request. In the future, this design will change to an asynchronous operation-based mode.
  • Non-persistence: the service currently stores all metadata in memory, so will lose all knowledge of deployments and their metadata on restart. In the future, the service will persist all deployment metadata in the cluster.

Manager

The manager service acts as both the API server and the workflow engine for processing deployments. The process for a deployment is:

  1. Create a new deployment with a manifest containing inputConfig from the user request
  2. Call out to expandybird service to perform expansion on the inputConfig
  3. Store the resulting expandedConfig and layout
  4. Call out to resourcifier service to perform processing on resources from the expandedConfig
  5. Respond with success or error messages to the original API request

The manager is responsible for all persistence of metadata associated with deployments, manifests, type instances, and other resources in the Deployment Manager model.

Expandybird

The expandybird service takes in input configurations, including the YAML configuration and import files, performs all template expansion, and returns the resulting flat configuration and layout. It is completely stateless and handles requests synchronously.

Because templates are Python or Jinja, the actual expansion process is performed in a sub-process running a Python interpreter. A new sub-process is created for every request to expandybird.

Currently expansion is not sandboxed, but the intention of templates is to be reproducable hermetically sealed entities, so future designs may introduce a sandbox to limit external interaction like network and disk access during expansion.

Resourcifier

The resourcifier service takes in flat expanded configurations containing only configurable resources, and makes the respective kubectl calls to process each resource. It is completely stateless and handles requests synchronously.

Processing may be to create, update, or delete a resource, depending on the request. The resourcifier handles references, and is the major workflow engine for resource processing. In the future. it will also handle dependencies between resources, as described earlier.

The resourcifier service returns either success or error messages encountered during resource processing.