-
Notifications
You must be signed in to change notification settings - Fork 6
/
evaluate.py
177 lines (154 loc) · 6.26 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Base code is from https://github.com/cs230-stanford/cs230-code-examples
import logging
import copy
import argparse
import os
from collections import OrderedDict
import torch
import torch.nn as nn
import numpy as np
import utils
from src.model import MetaLearner
from src.model import metrics
from src.data_loader import split_omniglot_characters
from src.data_loader import load_imagenet_images
from src.data_loader import OmniglotTask
from src.data_loader import ImageNetTask
from torch.autograd import Variable
from src.data_loader import fetch_dataloaders
parser = argparse.ArgumentParser()
parser.add_argument(
'--data_dir',
default='data/Omniglot',
help="Directory containing the dataset")
parser.add_argument(
'--model_dir',
default='experiments/base_model',
help="Directory containing params.json")
parser.add_argument(
'--restore_file',
default='best',
help="name of the file in --model_dir containing weights to load")
def evaluate(model, loss_fn, meta_classes, task_type, metrics, params, split):
"""
Evaluate the model on `num_steps` batches.
Args:
model: (MetaLearner) a meta-learner that is trained on MAML
loss_fn: a loss function
meta_classes: (list) a list of classes to be evaluated in meta-training or meta-testing
task_type: (subclass of FewShotTask) a type for generating tasks
metrics: (dict) a dictionary of functions that compute a metric using
the output and labels of each batch
params: (Params) hyperparameters
split: (string) 'train' if evaluate on 'meta-training' and
'val' if evaluate on 'meta-validating' and
'test' if evaluate on 'meta-testing'
"""
# set model to evaluation mode
# NOTE eval() is not needed since everytime task is varying and batchnorm
# should compute statistics within the task.
# model.eval()
# summary for current eval loop
summ = []
# compute metrics over the dataset
for episode in range(params.num_steps):
# Make a single task
task = task_type(meta_classes, params.num_classes, params.num_samples,
params.num_query)
dataloaders = fetch_dataloaders(['train', 'test'], task)
dl_sup = dataloaders['train']
dl_que = dataloaders['test']
X_sup, Y_sup = dl_sup.__iter__().next()
X_que, Y_que = dl_que.__iter__().next()
# move to GPU if available
if params.cuda:
X_sup, Y_sup = X_sup.cuda(async=True), Y_sup.cuda(async=True)
X_que, Y_que = X_que.cuda(async=True), Y_que.cuda(async=True)
# clear previous gradients, compute gradients of all variables wrt loss
def zero_grad(params):
for p in params:
if p.grad is not None:
p.grad.zero_()
# Single inner gradient update
Y_sup_hat = model(X_sup)
loss = loss_fn(Y_sup_hat, Y_sup)
zero_grad(model.parameters())
grads = torch.autograd.grad(loss, model.parameters())
# step() manually
adapted_state_dict = model.cloned_state_dict()
adapted_params = OrderedDict()
for (key, val), grad in zip(model.named_parameters(), grads):
# NOTE Here Meta-SGD is different from naive MAML
task_lr = model.task_lr[key]
adapted_params[key] = val - task_lr * grad
adapted_state_dict[key] = adapted_params[key]
Y_que_hat = model(X_que, adapted_state_dict)
loss = loss_fn(Y_que_hat, Y_que) # NOTE !!!!!!!!
# extract data from torch Variable, move to cpu, convert to numpy arrays
Y_que_hat = Y_que_hat.data.cpu().numpy()
Y_que = Y_que.data.cpu().numpy()
# compute all metrics on this batch
summary_batch = {
metric: metrics[metric](Y_que_hat, Y_que)
for metric in metrics
}
summary_batch['loss'] = loss.item()
summ.append(summary_batch)
# compute mean of all metrics in summary
metrics_mean = {
metric: np.mean([x[metric] for x in summ])
for metric in summ[0]
}
metrics_string = " ; ".join(
"{}: {:05.3f}".format(k, v) for k, v in metrics_mean.items())
logging.info("- [" + split.upper() + "] Eval metrics : " + metrics_string)
return metrics_mean
if __name__ == '__main__':
"""
Evaluate the trained model on the test set.
"""
# Load the parameters
args = parser.parse_args()
json_path = os.path.join(args.model_dir, 'params.json')
assert os.path.isfile(
json_path), "No json configuration file found at {}".format(json_path)
params = utils.Params(json_path)
# use GPU if available
params.cuda = torch.cuda.is_available() # use GPU is available
# Set the random seed for reproducible experiments
torch.manual_seed(params.SEED)
if params.cuda: torch.cuda.manual_seed(params.SEED)
# Split meta-training and meta-testing characters
if 'Omniglot' in args.data_dir and params.dataset == 'Omniglot':
params.in_channels = 1
params.in_features_fc = 1
(meta_train_classes, meta_val_classes,
meta_test_classes) = split_omniglot_characters(
args.data_dir, params.SEED)
task_type = OmniglotTask
elif ('miniImageNet' in args.data_dir or
'tieredImageNet' in args.data_dir) and params.dataset == 'ImageNet':
params.in_channels = 3
params.in_features_fc = 4
(meta_train_classes, meta_val_classes,
meta_test_classes) = load_imagenet_images(args.data_dir)
task_type = ImageNetTask
else:
raise ValueError("I don't know your dataset")
# Define the model and optimizer
if params.cuda:
model = MetaLearner(params).cuda()
else:
model = MetaLearner(params)
# NOTE we need to define task_lr after defining model
model.define_task_lr_params()
# fetch loss function and metrics
loss_fn = nn.NLLLoss()
model_metrics = metrics
# Reload weights from the saved file
utils.load_checkpoint(
os.path.join(args.model_dir, args.restore_file + '.pth.tar'), model)
# Evaluate
test_metrics = evaluate(model, loss_fn, meta_test_classes, task_type,
metrics, params, 'test')
print(test_metrics)