-
Notifications
You must be signed in to change notification settings - Fork 2.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
refactor(encoder): add the channel_axis argument
- Loading branch information
Showing
2 changed files
with
59 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,58 @@ | ||
import numpy as np | ||
|
||
from . import BaseNumericEncoder | ||
|
||
|
||
class PaddlehubEncoder(BaseNumericEncoder): | ||
def __init__(self, | ||
model_name: str, | ||
output_feature: str, | ||
pool_strategy: str = None, | ||
channel_axis: int = -3, | ||
*args, | ||
**kwargs): | ||
super().__init__(*args, **kwargs) | ||
self.model_name = model_name | ||
self.pool_strategy = pool_strategy | ||
self.outputs_name = output_feature | ||
self.inputs_name = None | ||
self.channel_axis = channel_axis | ||
self._default_channel_axis = -3 | ||
|
||
def post_init(self): | ||
import paddlehub as hub | ||
import paddle.fluid as fluid | ||
module = hub.Module(name=self.model_name) | ||
inputs, outputs, self.model = module.context(trainable=False) | ||
self.get_inputs_and_outputs_name(inputs, outputs) | ||
place = fluid.CUDAPlace(0) if self.on_gpu else fluid.CPUPlace() | ||
self.exe = fluid.Executor(place) | ||
|
||
def get_inputs_and_outputs_name(self, input_dict, output_dict): | ||
raise NotImplementedError | ||
|
||
def encode(self, data: 'np.ndarray', *args, **kwargs) -> 'np.ndarray': | ||
""" | ||
:param data: a `B x T x (Channel x Height x Width)` numpy ``ndarray``, `B` is the size of the batch, `T` is the | ||
number of frames | ||
:return: a `B x D` numpy ``ndarray``, `D` is the output dimension | ||
""" | ||
if self.channel_axis != self._default_channel_axis: | ||
data = np.moveaxis(data, self.channel_axis, self._default_channel_axis) | ||
feature_map, *_ = self.exe.run( | ||
program=self.model, | ||
fetch_list=[self.outputs_name], | ||
feed={self.inputs_name: data.astype('float32')}, | ||
return_numpy=True | ||
) | ||
if feature_map.ndim == 2 or self.pool_strategy is None: | ||
return feature_map | ||
return self.get_pooling(feature_map) | ||
|
||
def get_pooling(self, data: 'np.ndarray', axis=None) -> 'np.ndarray': | ||
_reduce_axis = tuple((i for i in range(len(data.shape)) if i > 1)) | ||
return getattr(np, self.pool_strategy)(data, axis=_reduce_axis) | ||
|
||
def close(self): | ||
self.exe.close() |