-
Notifications
You must be signed in to change notification settings - Fork 79
/
criteria.py
195 lines (165 loc) · 11.5 KB
/
criteria.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from __future__ import division
import nltk
from nltk.stem.wordnet import WordNetLemmatizer
from pattern.en import conjugate, lemma, lexeme, PRESENT, SG, PL, PAST, PROGRESSIVE
import random
# Function 0: List of stop words
def get_stopwords():
'''
:return: a set of 266 stop words from nltk. eg. {'someone', 'anyhow', 'almost', 'none', 'mostly', 'around', 'being', 'fifteen', 'moreover', 'whoever', 'further', 'not', 'side', 'keep', 'does', 'regarding', 'until', 'across', 'during', 'nothing', 'of', 'we', 'eleven', 'say', 'between', 'upon', 'whole', 'in', 'nowhere', 'show', 'forty', 'hers', 'may', 'who', 'onto', 'amount', 'you', 'yours', 'his', 'than', 'it', 'last', 'up', 'ca', 'should', 'hereafter', 'others', 'would', 'an', 'all', 'if', 'otherwise', 'somehow', 'due', 'my', 'as', 'since', 'they', 'therein', 'together', 'hereupon', 'go', 'throughout', 'well', 'first', 'thence', 'yet', 'were', 'neither', 'too', 'whether', 'call', 'a', 'without', 'anyway', 'me', 'made', 'the', 'whom', 'but', 'and', 'nor', 'although', 'nine', 'whose', 'becomes', 'everywhere', 'front', 'thereby', 'both', 'will', 'move', 'every', 'whence', 'used', 'therefore', 'anyone', 'into', 'meanwhile', 'perhaps', 'became', 'same', 'something', 'very', 'where', 'besides', 'own', 'whereby', 'whither', 'quite', 'wherever', 'why', 'latter', 'down', 'she', 'sometimes', 'about', 'sometime', 'eight', 'ever', 'towards', 'however', 'noone', 'three', 'top', 'can', 'or', 'did', 'seemed', 'that', 'because', 'please', 'whereafter', 'mine', 'one', 'us', 'within', 'themselves', 'only', 'must', 'whereas', 'namely', 'really', 'yourselves', 'against', 'thus', 'thru', 'over', 'some', 'four', 'her', 'just', 'two', 'whenever', 'seeming', 'five', 'him', 'using', 'while', 'already', 'alone', 'been', 'done', 'is', 'our', 'rather', 'afterwards', 'for', 'back', 'third', 'himself', 'put', 'there', 'under', 'hereby', 'among', 'anywhere', 'at', 'twelve', 'was', 'more', 'doing', 'become', 'name', 'see', 'cannot', 'once', 'thereafter', 'ours', 'part', 'below', 'various', 'next', 'herein', 'also', 'above', 'beside', 'another', 'had', 'has', 'to', 'could', 'least', 'though', 'your', 'ten', 'many', 'other', 'from', 'get', 'which', 'with', 'latterly', 'now', 'never', 'most', 'so', 'yourself', 'amongst', 'whatever', 'whereupon', 'their', 'serious', 'make', 'seem', 'often', 'on', 'seems', 'any', 'hence', 'herself', 'myself', 'be', 'either', 'somewhere', 'before', 'twenty', 'here', 'beyond', 'this', 'else', 'nevertheless', 'its', 'he', 'except', 'when', 'again', 'thereupon', 'after', 'through', 'ourselves', 'along', 'former', 'give', 'enough', 'them', 'behind', 'itself', 'wherein', 'always', 'such', 'several', 'these', 'everyone', 'toward', 'have', 'nobody', 'elsewhere', 'empty', 'few', 'six', 'formerly', 'do', 'no', 'then', 'unless', 'what', 'how', 'even', 'i', 'indeed', 'still', 'might', 'off', 'those', 'via', 'fifty', 'each', 'out', 'less', 're', 'take', 'by', 'hundred', 'much', 'anything', 'becoming', 'am', 'everything', 'per', 'full', 'sixty', 'are', 'bottom', 'beforehand'}
'''
stop_words = ['a', 'about', 'above', 'across', 'after', 'afterwards', 'again', 'against', 'ain', 'all', 'almost', 'alone', 'along', 'already', 'also', 'although', 'am', 'among', 'amongst', 'an', 'and', 'another', 'any', 'anyhow', 'anyone', 'anything', 'anyway', 'anywhere', 'are', 'aren', "aren't", 'around', 'as', 'at', 'back', 'been', 'before', 'beforehand', 'behind', 'being', 'below', 'beside', 'besides', 'between', 'beyond', 'both', 'but', 'by', 'can', 'cannot', 'could', 'couldn', "couldn't", 'd', 'didn', "didn't", 'doesn', "doesn't", 'don', "don't", 'down', 'due', 'during', 'either', 'else', 'elsewhere', 'empty', 'enough', 'even', 'ever', 'everyone', 'everything', 'everywhere', 'except', 'first', 'for', 'former', 'formerly', 'from', 'hadn', "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'he', 'hence', 'her', 'here', 'hereafter', 'hereby', 'herein', 'hereupon', 'hers', 'herself', 'him', 'himself', 'his', 'how', 'however', 'hundred', 'i', 'if', 'in', 'indeed', 'into', 'is', 'isn', "isn't", 'it', "it's", 'its', 'itself', 'just', 'latter', 'latterly', 'least', 'll', 'may', 'me', 'meanwhile', 'mightn', "mightn't", 'mine', 'more', 'moreover', 'most', 'mostly', 'must', 'mustn', "mustn't", 'my', 'myself', 'namely', 'needn', "needn't", 'neither', 'never', 'nevertheless', 'next', 'no', 'nobody', 'none', 'noone', 'nor', 'not', 'nothing', 'now', 'nowhere', 'o', 'of', 'off', 'on', 'once', 'one', 'only', 'onto', 'or', 'other', 'others', 'otherwise', 'our', 'ours', 'ourselves', 'out', 'over', 'per', 'please','s', 'same', 'shan', "shan't", 'she', "she's", "should've", 'shouldn', "shouldn't", 'somehow', 'something', 'sometime', 'somewhere', 'such', 't', 'than', 'that', "that'll", 'the', 'their', 'theirs', 'them', 'themselves', 'then', 'thence', 'there', 'thereafter', 'thereby', 'therefore', 'therein', 'thereupon', 'these', 'they','this', 'those', 'through', 'throughout', 'thru', 'thus', 'to', 'too','toward', 'towards', 'under', 'unless', 'until', 'up', 'upon', 'used', 've', 'was', 'wasn', "wasn't", 'we', 'were', 'weren', "weren't", 'what', 'whatever', 'when', 'whence', 'whenever', 'where', 'whereafter', 'whereas', 'whereby', 'wherein', 'whereupon', 'wherever', 'whether', 'which', 'while', 'whither', 'who', 'whoever', 'whole', 'whom', 'whose', 'why', 'with', 'within', 'without', 'won', "won't", 'would', 'wouldn', "wouldn't", 'y', 'yet', 'you', "you'd", "you'll", "you're", "you've", 'your', 'yours', 'yourself', 'yourselves']
stop_words = set(stop_words)
return stop_words
# StopWords = {}
# StopWords['nltk'] = set(nltk.corpus.stopwords.words('english'))
#
# import spacy
# nlp = spacy.load("en")
# StopWords['spacy'] = nlp.Defaults.stop_words
#
# return StopWords['nltk'] # | StopWords['spacy']
UniversalPos = ['NOUN', 'VERB', 'ADJ', 'ADV',
'PRON', 'DET', 'ADP', 'NUM',
'CONJ', 'PRT', '.', 'X']
# Function 1:
def get_pos(sent, tagset='universal'):
'''
:param sent: list of word strings
tagset: {'universal', 'default'}
:return: list of pos tags.
Universal (Coarse) Pos tags has 12 categories
- NOUN (nouns)
- VERB (verbs)
- ADJ (adjectives)
- ADV (adverbs)
- PRON (pronouns)
- DET (determiners and articles)
- ADP (prepositions and postpositions)
- NUM (numerals)
- CONJ (conjunctions)
- PRT (particles)
- . (punctuation marks)
- X (a catch-all for other categories such as abbreviations or foreign words)
'''
if tagset == 'default':
word_n_pos_list = nltk.pos_tag(sent)
elif tagset == 'universal':
word_n_pos_list = nltk.pos_tag(sent, tagset=tagset)
_, pos_list = zip(*word_n_pos_list)
return pos_list
# Function 2: Pos Filter
def pos_filter(ori_pos, new_pos_list):
same = [True if ori_pos == new_pos or (set([ori_pos, new_pos]) <= set(['NOUN', 'VERB']))
else False
for new_pos in new_pos_list]
return same
# Function 3:
def get_v_tense(sent):
'''
:param sent: a list of words
:return tenses: a dict {key (word ix): value (tense, e.g. VBD)}
pos of verbs
- VB Verb, base form
- VBD Verb, past tense
- VBG Verb, gerund or present participle
- VBN Verb, past participle
- VBP Verb, non-3rd person singular present
- VBZ Verb, 3rd person singular present
'''
word_n_pos_list = nltk.pos_tag(sent)
_, pos_list = zip(*word_n_pos_list)
tenses = {w_ix: tense for w_ix, tense in enumerate(pos_list) if tense.startswith('V')}
return tenses
def change_tense(word, tense, lemmatize=False):
'''
en.verb.tenses():
['past', '3rd singular present', 'past participle', 'infinitive',
'present participle', '1st singular present', '1st singular past',
'past plural', '2nd singular present', '2nd singular past',
'3rd singular past', 'present plural']
:return:
reference link: https://www.clips.uantwerpen.be/pages/pattern-en#conjugation
'''
if lemmatize:
word = WordNetLemmatizer().lemmatize(word, 'v')
# if pos(word) is not verb, return word
lookup = {
'VB': conjugate(verb=word, tense=PRESENT, number=SG),
'VBD': conjugate(verb=word, tense=PAST, aspect=PROGRESSIVE, number=SG),
'VBG': conjugate(verb=word, tense=PRESENT, aspect=PROGRESSIVE, number=SG),
'VBN': conjugate(verb=word, tense=PAST, aspect=PROGRESSIVE, number=SG),
'VBP': conjugate(verb=word, tense=PRESENT, number=PL),
'VBZ': conjugate(verb=word, tense=PRESENT, number=SG),
}
return lookup[tense]
def get_sent_list():
file_format = "/afs/csail.mit.edu/u/z/zhijing/proj/to_di/data/{}/test_lm.txt"
content = []
for dataset in ['ag', 'fake', 'mr', 'yelp']:
file = file_format.format(dataset)
with open(file) as f:
content += [line.strip().split() for line in f if line.strip()]
return content
def check_pos(sent_list, win_size=10):
'''
:param sent_list:
:param win_size:
:param pad_size:
:return: diff_ix = Counter({0: 606, 1: 180, 2: 42, 3: 15, 4: 5, 5: 1})
len(sent_list) = 60139
'''
sent_list = sent_list[:]
random.shuffle(sent_list)
sent_list = sent_list[:100]
center_ix = [random.randint(0 + win_size // 2, len(sent) - 1 - win_size // 2)
if len(sent) > win_size else len(sent) // 2
for sent in sent_list]
word_range = [[max(0, cen_ix - win_size // 2), min(len(sent), cen_ix + win_size // 2)]
for cen_ix, sent in zip(center_ix, sent_list)]
assert len(center_ix) == len(word_range)
assert len(center_ix) == len(sent_list)
corr_pos = [get_pos(sent)[word_range[sent_ix][0]: word_range[sent_ix][1]] for sent_ix, sent in enumerate(sent_list)]
part_pos = [get_pos(sent[word_range[sent_ix][0]: word_range[sent_ix][1]]) for sent_ix, sent in enumerate(sent_list)]
# corr_pos = [sent_pos[pad_size: -pad_size] if len(sent_pos) > 2 * pad_size else sent_pos
# for sent_ix, sent_pos in enumerate(corr_pos)]
# part_pos = [sent_pos[pad_size: -pad_size] if len(sent_pos) > 2 * pad_size else sent_pos
# for sent_ix, sent_pos in enumerate(part_pos)]
diff_ix = []
diff_s_ix = []
for sent_ix, (sent_pos_corr, sent_pos_part) in enumerate(zip(corr_pos, part_pos)):
cen_ix = center_ix[sent_ix] - word_range[sent_ix][0]
if sent_pos_corr[cen_ix] != sent_pos_part[cen_ix]:
diff_s_ix += [sent_ix]
# show_var(["diff_s_ix", "win_size"])
if diff_s_ix:
import pdb;
pdb.set_trace()
# if sent_pos_corr != sent_pos_part:
# diff_ix += [w_ix for w_ix, (p_corr, p_part) in enumerate(zip(sent_pos_corr, sent_pos_part))
# if p_corr != p_part]
# diff_s_ix += [sent_ix]
def main():
# Function 0:
stop_words = get_stopwords()
# Function 1:
sent = 'i have a dream'.split()
pos_list = get_pos(sent)
sent_list = get_sent_list()
for _ in range(10):
check_pos(sent_list)
import pdb;
pdb.set_trace()
# Function 2:
ori_pos = 'NOUN'
new_pos_list = ['NOUN', 'VERB', 'ADJ', 'ADV', 'X', '.']
same = pos_filter(ori_pos, new_pos_list)
# Function 3:
tenses = get_v_tense(sent)
# this following one does not work, due to the failure to import
# NodeBox English linguistic library (http://nodebox.net/code/index.php/Linguistics)
new_word = change_tense('made', 'VBD')
import pdb;
pdb.set_trace()
if __name__ == "__main__":
main()