-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathmodules.py
83 lines (67 loc) · 2.7 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
def deep_iter(x):
if isinstance(x, list) or isinstance(x, tuple):
for u in x:
for v in deep_iter(u):
yield v
else:
yield x
class CNN_Text(nn.Module):
def __init__(self, n_in, widths=[3,4,5], filters=100):
super(CNN_Text,self).__init__()
Ci = 1
Co = filters
h = n_in
self.convs1 = nn.ModuleList([nn.Conv2d(Ci, Co, (w, h)) for w in widths])
def forward(self, x):
# x is (batch, len, d)
x = x.unsqueeze(1) # (batch, Ci, len, d)
x = [F.relu(conv(x)).squeeze(3) for conv in self.convs1] #[(batch, Co, len), ...]
x = [F.max_pool1d(i, i.size(2)).squeeze(2) for i in x] #[(N,Co), ...]
x = torch.cat(x, 1)
return x
class EmbeddingLayer(nn.Module):
def __init__(self, n_d=100, embs=None, fix_emb=True, oov='<oov>', pad='<pad>', normalize=True):
super(EmbeddingLayer, self).__init__()
word2id = {}
if embs is not None:
embwords, embvecs = embs
for word in embwords:
assert word not in word2id, "Duplicate words in pre-trained embeddings"
word2id[word] = len(word2id)
sys.stdout.write("{} pre-trained word embeddings loaded.\n".format(len(word2id)))
# if n_d != len(embvecs[0]):
# sys.stdout.write("[WARNING] n_d ({}) != word vector size ({}). Use {} for embeddings.\n".format(
# n_d, len(embvecs[0]), len(embvecs[0])
# ))
n_d = len(embvecs[0])
# for w in deep_iter(words):
# if w not in word2id:
# word2id[w] = len(word2id)
if oov not in word2id:
word2id[oov] = len(word2id)
if pad not in word2id:
word2id[pad] = len(word2id)
self.word2id = word2id
self.n_V, self.n_d = len(word2id), n_d
self.oovid = word2id[oov]
self.padid = word2id[pad]
self.embedding = nn.Embedding(self.n_V, n_d)
self.embedding.weight.data.uniform_(-0.25, 0.25)
if embs is not None:
weight = self.embedding.weight
weight.data[:len(embwords)].copy_(torch.from_numpy(embvecs))
sys.stdout.write("embedding shape: {}\n".format(weight.size()))
if normalize:
weight = self.embedding.weight
norms = weight.data.norm(2,1)
if norms.dim() == 1:
norms = norms.unsqueeze(1)
weight.data.div_(norms.expand_as(weight.data))
if fix_emb:
self.embedding.weight.requires_grad = False
def forward(self, input):
return self.embedding(input)