-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
271 lines (223 loc) · 11.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
# For inquiries contact george.drettakis@inria.fr
#
import numpy as np
import random
import os
import torch
from random import randint
from utils.loss_utils import l1_loss
from gaussian_renderer import render_flow as render
import sys
from scene import Scene
from scene.flexible_deform_model import GaussianModel
from utils.general_utils import safe_state
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
from arguments import FDMHiddenParams as ModelHiddenParams
from utils.timer import Timer
import torch.nn.functional as F
# import lpips
from utils.scene_utils import render_training_image
to8b = lambda x : (255*np.clip(x.cpu().numpy(),0,1)).astype(np.uint8)
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
def scene_reconstruction(dataset, opt, hyper, pipe, testing_iterations, saving_iterations,
checkpoint_iterations, checkpoint, debug_from,
gaussians, scene, tb_writer, train_iter, timer):
first_iter = 0
gaussians.training_setup(opt)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
final_iter = train_iter
progress_bar = tqdm(range(first_iter, final_iter), desc="Training progress")
first_iter += 1
# lpips_model = lpips.LPIPS(net="vgg").cuda()
video_cams = scene.getVideoCameras()
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras()
for iteration in range(first_iter, final_iter+1):
iter_start.record()
gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 500 == 0:
gaussians.oneupSHdegree()
idx = randint(0, len(viewpoint_stack)-1)
viewpoint_cams = [viewpoint_stack[idx]]
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
images = []
depths = []
gt_images = []
gt_depths = []
masks = []
radii_list = []
visibility_filter_list = []
viewspace_point_tensor_list = []
for viewpoint_cam in viewpoint_cams:
render_pkg = render(viewpoint_cam, gaussians, pipe, background)
image, depth, viewspace_point_tensor, visibility_filter, radii = \
render_pkg["render"], render_pkg["depth"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
gt_image = viewpoint_cam.original_image.cuda().float()
gt_depth = viewpoint_cam.original_depth.cuda().float()
mask = viewpoint_cam.mask.cuda()
images.append(image.unsqueeze(0))
depths.append(depth.unsqueeze(0))
gt_images.append(gt_image.unsqueeze(0))
gt_depths.append(gt_depth.unsqueeze(0))
masks.append(mask.unsqueeze(0))
radii_list.append(radii.unsqueeze(0))
visibility_filter_list.append(visibility_filter.unsqueeze(0))
viewspace_point_tensor_list.append(viewspace_point_tensor)
radii = torch.cat(radii_list,0).max(dim=0).values
visibility_filter = torch.cat(visibility_filter_list).any(dim=0)
image_tensor = torch.cat(images,0)
depth_tensor = torch.cat(depths, 0)
gt_image_tensor = torch.cat(gt_images,0)
gt_depth_tensor = torch.cat(gt_depths, 0)
mask_tensor = torch.cat(masks, 0)
Ll1 = l1_loss(image_tensor, gt_image_tensor, mask_tensor)
if (gt_depth_tensor!=0).sum() < 10:
depth_loss = torch.tensor(0.).cuda()
else:
depth_tensor[depth_tensor!=0] = 1 / depth_tensor[depth_tensor!=0]
gt_depth_tensor[gt_depth_tensor!=0] = 1 / gt_depth_tensor[gt_depth_tensor!=0]
depth_loss = l1_loss(depth_tensor, gt_depth_tensor, mask_tensor)
psnr_ = psnr(image_tensor, gt_image_tensor, mask_tensor).mean().double()
loss = Ll1 + depth_loss
loss.backward()
viewspace_point_tensor_grad = torch.zeros_like(viewspace_point_tensor)
for idx in range(0, len(viewspace_point_tensor_list)):
viewspace_point_tensor_grad = viewspace_point_tensor_grad + viewspace_point_tensor_list[idx].grad
iter_end.record()
with torch.no_grad():
# Progress bar
total_point = gaussians._xyz.shape[0]
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{loss.item():.{7}f}",
"psnr": f"{psnr_:.{2}f}",
"point":f"{total_point}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
# Log and save
timer.pause()
training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, [pipe, background])
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration, 'fine')
timer.start()
# Densification
if iteration < opt.densify_until_iter :
# Keep track of max radii in image-space for pruning
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
gaussians.add_densification_stats(viewspace_point_tensor_grad, visibility_filter)
opacity_threshold = opt.opacity_threshold_fine_init - iteration*(opt.opacity_threshold_fine_init - opt.opacity_threshold_fine_after)/(opt.densify_until_iter)
densify_threshold = opt.densify_grad_threshold_fine_init - iteration*(opt.densify_grad_threshold_fine_init - opt.densify_grad_threshold_after)/(opt.densify_until_iter )
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0 :
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
gaussians.densify(densify_threshold, opacity_threshold, scene.cameras_extent, size_threshold)
if iteration > opt.pruning_from_iter and iteration % opt.pruning_interval == 0:
size_threshold = 40 if iteration > opt.opacity_reset_interval else None
gaussians.prune(densify_threshold, opacity_threshold, scene.cameras_extent, size_threshold)
if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
print("reset opacity")
gaussians.reset_opacity()
# Optimizer step
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
if (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
def training(dataset, hyper, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from, expname, extra_mark):
tb_writer = prepare_output_and_logger(expname)
gaussians = GaussianModel(dataset.sh_degree, hyper)
dataset.model_path = args.model_path
timer = Timer()
scene = Scene(dataset, gaussians)
timer.start()
scene_reconstruction(dataset, opt, hyper, pipe, testing_iterations, saving_iterations,
checkpoint_iterations, checkpoint, debug_from,
gaussians, scene, tb_writer, opt.iterations,timer)
def prepare_output_and_logger(expname):
if not args.model_path:
unique_str = expname
args.model_path = os.path.join("./output/", unique_str)
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs):
if tb_writer:
tb_writer.add_scalar(f'train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar(f'train_loss_patchestotal_loss', loss.item(), iteration)
tb_writer.add_scalar(f'iter_time', elapsed, iteration)
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
if __name__ == "__main__":
# Set up command line argument parser
# torch.set_default_tensor_type('torch.FloatTensor')
torch.cuda.empty_cache()
parser = ArgumentParser(description="Training script parameters")
setup_seed(6666)
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
hp = ModelHiddenParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[i*500 for i in range(0,120)])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[3000,])
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--start_checkpoint", type=str, default = None)
parser.add_argument("--expname", type=str, default = "endonerf/pulling_fdm")
parser.add_argument("--configs", type=str, default = "arguments/endonerf/default.py")
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
if args.configs:
import mmcv
from utils.params_utils import merge_hparams
config = mmcv.Config.fromfile(args.configs)
args = merge_hparams(args, config)
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
# Start GUI server, configure and run training
# network_gui.init(args.ip, args.port)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
training(lp.extract(args), hp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, \
args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from, args.expname, args.extra_mark)
# All done
print("\nTraining complete.")