-
Notifications
You must be signed in to change notification settings - Fork 25
/
ch-one-dim-ints-sv.tex
1890 lines (1740 loc) · 62.4 KB
/
ch-one-dim-ints-sv.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{One-dimensional Integrals in Several Variables} \label{path:chapter}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Differentiation under the integral}
\label{sec:diffunderint}
\sectionnotes{less than 1 lecture}
Let $f(x,y)$ be a function of two variables and define
\begin{equation*}
g(y) \coloneqq \int_a^b f(x,y) \,dx .
\end{equation*}
If $f$ is continuous on the compact rectangle $[a,b] \times [c,d]$, then
\volIref{\propref*{vI-prop:integralcontcont} from volume I}{\propref{prop:integralcontcont}}
says that $g$ is continuous on $[c,d]$.
Suppose $f$ is differentiable in $y$.
When can we \myquote{differentiate under the integral}?
That is, when is it true that $g$ is differentiable and its derivative is
\begin{equation*}
g'(y) \overset{?}{=} \int_a^b \frac{\partial f}{\partial y}(x,y) \,dx .
\end{equation*}
Differentiation is a limit and therefore we are really asking when do the
two limiting operations of integration and differentiation commute.
This is not always possible and some extra hypothesis is
necessary. The first
question we would face is the integrability of
$\frac{\partial f}{\partial y}$, but the formula above can fail even if
$\frac{\partial f}{\partial y}$ is integrable as a function of $x$ for every
fixed $y$.
We prove a simple, but perhaps the most useful version of this kind of result.
\begin{thm}[\myindex{Leibniz integral rule}]
Suppose $f \colon [a,b] \times [c,d] \to \R$ is a continuous function,
such that $\frac{\partial f}{\partial y}$ exists for all $(x,y) \in [a,b]
\times [c,d]$ and is continuous. Define $g \colon [c,d] \to \R$ by
\begin{equation*}
g(y) \coloneqq \int_a^b f(x,y) \,dx .
\end{equation*}
Then $g$ is continuously differentiable and
\begin{equation*}
g'(y) = \int_a^b \frac{\partial f}{\partial y}(x,y) \,dx .
\end{equation*}
\end{thm}
The hypotheses on $f$ and $\frac{\partial f}{\partial y}$ can be
weakened, see e.g.\ \exerciseref{exercise:strongerleibniz},
but not dropped outright.
The main point in the proof requires that
$\frac{\partial f}{\partial y}$ exists and is continuous for all $x$
up to the endpoints, but we only need a small
interval in the $y$ direction. In applications, we often make $[c,d]$ a
small interval around the point where we need to differentiate.
\begin{proof}
Fix $y \in [c,d]$ and let $\epsilon > 0$ be given.
As $\frac{\partial f}{\partial y}$ is continuous on $[a,b] \times [c,d]$ it
is uniformly continuous. In particular, there exists $\delta > 0$ such that
whenever $y_1 \in [c,d]$ with
$\abs{y_1-y} < \delta$ and all $x \in [a,b]$, we have
\begin{equation*}
\abs{\frac{\partial f}{\partial y}(x,y_1)-\frac{\partial f}{\partial y}(x,y)} < \epsilon .
\end{equation*}
Suppose $h$ is such that $y+h \in [c,d]$ and $\abs{h} < \delta$.
Fix $x$ for a moment
and apply the mean value theorem to find a $y_1$ between $y$ and $y+h$ such that
\begin{equation*}
\frac{f(x,y+h)-f(x,y)}{h}
=
\frac{\partial f}{\partial y}(x,y_1) .
\end{equation*}
As $\abs{y_1-y} \leq \abs{h} < \delta$,
\begin{equation*}
\abs{
\frac{f(x,y+h)-f(x,y)}{h}
-
\frac{\partial f}{\partial y}(x,y)
}
=
\abs{
\frac{\partial f}{\partial y}(x,y_1)
-
\frac{\partial f}{\partial y}(x,y)
}
< \epsilon .
\end{equation*}
The argument worked for every $x \in [a,b]$ (different $y_1$ may have been
used). Thus, as a function of
$x$
\begin{equation*}
x \mapsto \frac{f(x,y+h)-f(x,y)}{h}
\qquad
\text{converges uniformly to}
\qquad
x \mapsto \frac{\partial f}{\partial y}(x,y)
\qquad
\text{as } h \to 0 .
\end{equation*}
We defined uniform convergence for sequences although the idea is the
same. You may replace $h$ with a sequence of nonzero
numbers $\{ h_n \}_{n=1}^\infty$
converging to $0$ such that $y+h_n \in [c,d]$ and let $n \to \infty$.
Consider the difference quotient of $g$,
\begin{equation*}
\frac{g(y+h)-g(y)}{h}
=
\frac{\int_a^b f(x,y+h) \,dx -
\int_a^b f(x,y) \,dx }{h}
=
\int_a^b \frac{f(x,y+h)-f(x,y)}{h} \,dx .
\end{equation*}
Uniform convergence implies the limit can be taken underneath the integral.
So
\begin{equation*}
\lim_{h\to 0}
\frac{g(y+h)-g(y)}{h}
=
\int_a^b
\lim_{h\to 0}
\frac{f(x,y+h)-f(x,y)}{h} \,dx
=
\int_a^b
\frac{\partial f}{\partial y}(x,y) \,dx .
\end{equation*}
Then $g'$ is continuous on $[c,d]$ by
\volIref{\propref*{vI-prop:integralcontcont} from volume I}{\propref{prop:integralcontcont}} mentioned above.
\end{proof}
\begin{example}
Let
\begin{equation*}
f(y) = \int_0^1 \sin(x^2-y^2) \,dx .
\end{equation*}
Then
\begin{equation*}
f'(y) = \int_0^1 -2y\cos(x^2-y^2) \,dx .
\end{equation*}
\end{example}
\begin{example} \label{example:counterexamplediffunder}
Consider
\begin{equation*}
\int_0^{1} \frac{x-1}{\ln(x)} \,dx .
\end{equation*}
The function under the integral
extends to be continuous on $[0,1]$, and hence
the integral exists, see \exerciseref{exercise:counterexamplediffunder}. Trouble is finding it.
We introduce a parameter $y$
and define a function:
\begin{equation*}
g(y) \coloneqq \int_0^{1} \frac{x^y-1}{\ln(x)} \,dx .
\end{equation*}
The function
$\frac{x^y-1}{\ln(x)}$
also extends to a continuous function of $x$ and $y$
for $(x,y) \in [0,1] \times [0,1]$ (also part of the exercise).
See \figureref{fig:diffunderexample}.
\begin{myfigureht}
\includegraphics{figures/diffunderexample}
\caption{The graph $z= \frac{x^y-1}{\ln(x)}$ on $[0,1] \times [0,1]$.\label{fig:diffunderexample}}
\end{myfigureht}
Hence,
$g$ is a continuous function on $[0,1]$ and $g(0) = 0$.
For every $\epsilon > 0$, the $y$ derivative of the integrand, $x^y$,
is continuous on $[0,1] \times [\epsilon,1]$. Therefore,
for $y >0$, we may differentiate under the integral sign,
\begin{equation*}
g'(y) =
\int_0^{1} \frac{\ln(x) x^y}{\ln(x)} \,dx
=
\int_0^{1} x^y \,dx =
\frac{1}{y+1} .
\end{equation*}
We need to figure out $g(1)$ given that $g'(y) = \frac{1}{y+1}$ and $g(0) =
0$. Elementary calculus says that $g(1) = \int_0^1 g'(y)\,dy = \ln(2)$.
Thus,
\begin{equation*}
\int_0^{1} \frac{x-1}{\ln(x)} \,dx = \ln(2).
\end{equation*}
\end{example}
\subsection{Exercises}
\begin{exercise} \label{exercise:counterexamplediffunder}
Prove the two statements that were asserted in
\exampleref{example:counterexamplediffunder}:
\begin{enumerate}[a)]
\item
Prove $\frac{x-1}{\ln(x)}$ extends to a continuous function of
$[0,1]$. That is, there exists a continuous function on $[0,1]$
that equals $\frac{x-1}{\ln(x)}$ on $(0,1)$.
\item
Prove $\frac{x^y-1}{\ln(x)}$ extends to a continuous function
on $[0,1] \times [0,1]$.
\end{enumerate}
\end{exercise}
\begin{exercise}
Suppose $h \colon \R \to \R$ is continuous and $g
\colon \R \to \R$ is continuously differentiable and compactly
supported. That is, there exists some $M > 0$, such that $g(x) = 0$ whenever
$\abs{x} \geq M$. Define
\begin{equation*}
f(x) \coloneqq \int_{-\infty}^\infty h(y)g(x-y)\,dy .
\end{equation*}
Show that $f$ is differentiable.
\end{exercise}
\begin{exercise}
Suppose $f \colon \R \to \R$ is infinitely differentiable (derivatives of
all orders exist)
and $f(0) = 0$. Show that there exists an infinitely
differentiable function $g \colon \R \to \R$ such that $f(x) = x\,g(x)$.
Show also that
if $f'(0) \not= 0$, then $g(0) \not= 0$.\\
Hint: Write
$f(x) = \int_0^x f'(s) \,ds$ and then rewrite the integral to go
from $0$ to $1$.
\end{exercise}
\begin{exercise}
Compute $\int_0^1 e^{tx} \,dx$. Derive the formula for
$\int_0^1 x^n e^{x} \,dx$ not using integration by parts, but
by differentiation underneath the integral.
\end{exercise}
\begin{exercise}
Let $U \subset \R^n$ be open and suppose
$f(x,y_1,y_2,\ldots,y_n)$ is a continuous
function defined on $[0,1] \times U \subset \R^{n+1}$.
Suppose
$\frac{\partial f}{\partial y_1},
\frac{\partial f}{\partial y_2},\ldots,
\frac{\partial f}{\partial y_n}$
exist and are continuous on $[0,1] \times U$.
Prove that $F \colon U \to \R$ defined by
\begin{equation*}
F(y_1,y_2,\ldots,y_n) \coloneqq
\int_0^1
f(x,y_1,y_2,\ldots,y_n)
\, dx
\end{equation*}
is continuously differentiable.
\end{exercise}
\begin{myfigureht}
\includegraphics{figures/diffunderex916}
\caption{The graph $z= \frac{xy^3}{{(x^2+y^2)}^2}$ on
$[0,1] \times [0,1]$.\label{fig:diffunderex916}}
\end{myfigureht}
\begin{exercise}
\pagebreak[2]
Work out the following counterexample: Let
\begin{equation*}
f(x,y) \coloneqq
\begin{cases}
\frac{xy^3}{{(x^2+y^2)}^2} & \text{if } x\not=0 \text{ or } y\not= 0, \\
0 & \text{if } x=0 \text{ and } y=0.
\end{cases}
\end{equation*}
See \figureref{fig:diffunderex916}.
\begin{enumerate}[a)]
\item
Prove that for every fixed $y$, the function $x \mapsto f(x,y)$ is
Riemann integrable on $[0,1]$, and
\begin{equation*}
g(y) \coloneqq \int_0^1 f(x,y) \, dx = \frac{y}{2y^2+2} .
\end{equation*}
Therefore, $g'(y)$ exists and its derivative is the continuous function
\begin{equation*}
g'(y) =
\frac{d}{dy} \int_0^1 f(x,y) \, dx
=
\frac{1-y^2}{2{(y^2+1)}^2} .
\end{equation*}
\item
Prove $\frac{\partial f}{\partial y}$ exists at all $x$ and $y$ and
compute it.
\item
Show that for all $y$
\begin{equation*}
\int_0^1 \frac{\partial f}{\partial y} (x,y) \, dx
\end{equation*}
exists, but
\begin{equation*}
g'(0) \not= \int_0^1 \frac{\partial f}{\partial y} (x,0) \, dx .
\end{equation*}
\end{enumerate}
\end{exercise}
\begin{exercise}
\pagebreak[2]
Work out the following counterexample: Let
\begin{equation*}
f(x,y) \coloneqq
\begin{cases}
x \,\sin \left(\frac{y}{x^2+y^2}\right) & \text{if } (x,y) \not= (0,0),\\
0 & \text{if } (x,y)=(0,0).
\end{cases}
\end{equation*}
\begin{enumerate}[a)]
\item
Prove $f$ is continuous on all of $\R^2$.
Therefore the following function is well-defined for every $y \in \R$:
\begin{equation*}
g(y) \coloneqq \int_0^1 f(x,y) \, dx .
\end{equation*}
\item
Prove $\frac{\partial f}{\partial y}$ exists for all $(x,y)$,
but is not continuous at $(0,0)$.
\item
Show that $\int_0^1 \frac{\partial f}{\partial y}(x,0) \, dx$ does not
exist even if we take improper integrals, that is,
that the limit
$\lim\limits_{h \to 0^+} \int_h^1 \frac{\partial f}{\partial y}(x,0) \, dx$
does not exist.
\end{enumerate}
Note: Feel free to use what you know about sine and cosine from calculus.
\end{exercise}
\begin{exercise} \label{exercise:strongerleibniz}
\pagebreak[3]
Strengthen the Leibniz integral rule in the following way.
Suppose $f \colon (a,b) \times (c,d) \to \R$ is a bounded continuous function,
such that $\frac{\partial f}{\partial y}$ exists for all $(x,y) \in (a,b)
\times (c,d)$ and is continuous and bounded. Define $g \colon (c,d) \to \R$
by
\begin{equation*}
g(y) \coloneqq \int_a^b f(x,y) \,dx .
\end{equation*}
Then $g$ is continuously differentiable and
\begin{equation*}
g'(y) = \int_a^b \frac{\partial f}{\partial y}(x,y) \,dx .
\end{equation*}
Hint: See also \volIref{\exerciseref*{vI-exercise:integralcontcontextra} and
\thmref*{vI-thm:dersconverge} from
volume I}{\exerciseref{exercise:integralcontcontextra} and
\thmref{thm:dersconverge}}.
\end{exercise}
\begin{exercise}
Suppose $g \colon \R \to \R$ is continuously differentiable,
$h \colon \R^2 \to \R$ is continuous,
$\frac{\partial h}{\partial x}$ exists and is continuous at all points. Show that
\begin{equation*}
F(x,y) \coloneqq g(x) + \int_0^y h(x,s) \,ds
\end{equation*}
is continuously differentiable, and that it is the solution of
the partial differential equation $\frac{\partial F}{\partial y} = h$,
with the initial condition $F(x,0) = g(x)$ for all $x \in \R$.
\end{exercise}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\sectionnewpage
\section{Path integrals}
\label{sec:pathintegral}
%mbxINTROSUBSECTION
\sectionnotes{2--3 lectures}
\subsection{Piecewise smooth paths}
Let $\gamma \colon [a,b] \to \R^n$ be a function and write
$\gamma = (\gamma_1,\gamma_2,\ldots,\gamma_n)$.
Suppose $\gamma$ is
\emph{continuously differentiable},
meaning
it is differentiable and the derivative is continuous.
In other words, there exists a continuous function $\gamma^{\:\prime} \colon [a,b]
\to \R^n$ such that for every $t \in [a,b]$, we have
$\lim\limits_{h \to 0}
\frac{\snorm{\gamma(t+h)-\gamma(t) - \gamma^{\:\prime}(t) \, h}}{\sabs{h}} = 0$.
We treat
$\gamma^{\:\prime}(t)$ either as a linear operator (an $n \times 1$ matrix) or
a vector,
$\gamma^{\:\prime}(t) =
\bigl( \gamma_1^{\:\prime}(t), \gamma_2^{\:\prime}(t), \ldots,
\gamma_n^{\:\prime}(t) \bigr)$.
Equivalently,
$\gamma_j$ is a continuously differentiable function on $[a,b]$
for every $j=1,2,\ldots,n$.
By \exerciseref{exercise:normonedim}, the operator norm of
the operator $\gamma^{\:\prime}(t)$ equals
the euclidean norm of the corresponding vector, which allows us to write
$\snorm{\gamma^{\:\prime}(t)}$ without any confusion.
\begin{defn}
A continuously differentiable function $\gamma \colon [a,b] \to \R^n$ is
called a \emph{\myindex{smooth path}}
or a
\emph{\myindex{continuously differentiable path}}\footnote{The
word \myquote{smooth} can sometimes mean
\myquote{infinitely differentiable} in the literature.}
if
$\gamma$ is continuously differentiable and
$\gamma^{\:\prime}(t) \not= 0$ for all $t \in [a,b]$.
The function $\gamma \colon [a,b] \to \R^n$ is called a
\emph{\myindex{piecewise smooth path}} or a
\emph{\myindex{piecewise continuously differentiable path}}
if there exist finitely many points
$t_0 = a < t_1 < t_2 < \cdots < t_k = b$ such that
the restriction $\gamma|_{[t_{j-1},t_j]}$ is smooth path for every
$j=1,2,\ldots,k$.
A path $\gamma$ is
a \emph{\myindex{closed path}} if $\gamma(a) = \gamma(b)$, that is,
the path starts and ends in the same point.
A path $\gamma$ is a \emph{\myindex{simple path}} if
either 1) $\gamma$ is a one-to-one function, or 2)
$\gamma|_{[a,b)}$ is one-to-one and $\gamma(a)=\gamma(b)$ ($\gamma$ is a
simple closed path).
\end{defn}
\begin{example} \label{mv:example:unitsquarepath}
Let $\gamma \colon [0,4] \to \R^2$ be defined by
\begin{equation*}
\gamma(t) \coloneqq
\begin{cases}
(t,0) & \text{if } t \in [0,1],\\
(1,t-1) & \text{if } t \in (1,2],\\
(3-t,1) & \text{if } t \in (2,3],\\
(0,4-t) & \text{if } t \in (3,4].
\end{cases}
\end{equation*}
\begin{myfigureht}
\includegraphics{figures/squarepath}
\caption{The path $\gamma$ traversing the unit square.\label{fig:squarepath}}
\end{myfigureht}
The path $\gamma$ is the unit square traversed
counterclockwise. See \figureref{fig:squarepath}. It is
a piecewise smooth path. For example,
$\gamma|_{[1,2]}(t) = (1,t-1)$ and so
$(\gamma|_{[1,2]})'(t) = (0,1) \not= 0$. Similarly for the other 3 sides.
Notice
that
$(\gamma|_{[1,2]})'(1) = (0,1)$,
$(\gamma|_{[0,1]})'(1) = (1,0)$, but
$\gamma^{\:\prime}(1)$ does not exist. At the corners $\gamma$ is
not differentiable.
The path $\gamma$ is a simple closed path, as $\gamma|_{[0,4)}$ is
one-to-one and $\gamma(0)=\gamma(4)$.
\end{example}
The definition of a piecewise smooth path as we have given it implies
continuity (exercise). For general functions, many authors also
allow finitely many discontinuities, when they use the term \emph{piecewise
smooth}, and so one may say that we defined a piecewise smooth path
to be a \emph{\myindex{continuous piecewise smooth}} function.
While one may get by with smooth paths, for computations, the simplest
paths to write down are often piecewise smooth.
Generally, we are interested in the direct image $\gamma\bigl([a,b]\bigr)$,
rather than the specific parametrization, although that is also
important to some degree. When we informally talk about a path or a curve,
we often mean the set $\gamma\bigl([a,b]\bigr)$, depending
on context.
\begin{example}
The condition $\gamma^{\:\prime}(t) \not= 0$ means that the image
$\gamma\bigl([a,b]\bigr)$
has no \myquote{corners} where $\gamma$ is smooth.
Consider
\begin{equation*}
\gamma(t) \coloneqq
\begin{cases}
(t^2,0) & \text{if } t < 0,\\
(0,t^2) & \text{if } t \geq 0.
\end{cases}
\end{equation*}
See \figureref{fig:cornersmoothpath}.
It is left for the reader to check that $\gamma$ is continuously
differentiable, yet the image $\gamma(\R) = \bigl\{ (x,y) \in \R^2 : (x,y) =
(s,0) \text{ or } (x,y) = (0,s) \text{ for some } s \geq 0 \bigr\}$ has a
\myquote{corner} at the origin. And that is because $\gamma^{\:\prime}(0) = (0,0)$.
More complicated examples with, say, infinitely many corners exist,
see the exercises.
\begin{myfigureht}
\includegraphics{figures/cornersmoothpath}
\caption{``Smooth'' path with a corner if we allow zero derivative. The
points corresponding to several values of
$t$ are marked with dots.\label{fig:cornersmoothpath}}
\end{myfigureht}
\end{example}
The condition $\gamma^{\:\prime}(t) \not= 0$ even at the endpoints guarantees
not only no corners, but also that the path ends nicely, that is, it can
extend a little bit past the endpoints. Again, see the exercises.
\begin{example}
A graph of a continuously differentiable function $f \colon [a,b] \to \R$ is a smooth path.
Define $\gamma \colon [a,b] \to \R^2$ by
\begin{equation*}
\gamma(t) \coloneqq \bigl(t,f(t)\bigr) .
\end{equation*}
Then $\gamma^{\:\prime}(t) = \bigl( 1 , f'(t) \bigr)$, which is never zero,
and $\gamma\bigl([a,b]\bigr)$ is the graph of $f$.
There are other ways of parametrizing the path. That is, there are
different paths with the same image.
The function $t \mapsto (1-t)a+tb$, takes the interval $[0,1]$ to $[a,b]$.
Define
$\alpha \colon [0,1] \to \R^2$ by
\begin{equation*}
\alpha(t) \coloneqq \bigl((1-t)a+tb,f((1-t)a+tb)\bigr) .
\end{equation*}
Then
$\alpha'(t) = \bigl( b-a ,~ (b-a)f'((1-t)a+tb) \bigr)$, which is never zero.
As sets, $\alpha\bigl([0,1]\bigr) = \gamma\bigl([a,b]\bigr)
= \bigl\{ (x,y) \in \R^2 : x \in [a,b] \text{ and } f(x) = y \bigr\}$,
which is just the graph of $f$.
\end{example}
The last example leads us to a definition.
\begin{defn}
Let $\gamma \colon [a,b] \to \R^n$ be a smooth path and
$h \colon [c,d] \to [a,b]$ a continuously differentiable bijective function
such that $h'(t) \not= 0$ for all $t \in [c,d]$. Then
the composition
$\gamma \circ h$ is called a
\emph{\myindex{smooth reparametrization}}\index{reparametrization}
of $\gamma$.
Let $\gamma$ be a piecewise smooth path, and
$h$ a piecewise smooth bijective function with
nonzero one-sided limits of $h'$.
The composition
$\gamma \circ h$ is called a
\emph{\myindex{piecewise smooth reparametrization}} of $\gamma$.
If $h$ is strictly increasing, then $h$ is
said to \emph{\myindex{preserve orientation}}. If $h$ does not preserve
orientation, then $h$ is said to \emph{\myindex{reverse orientation}}.
\end{defn}
A reparametrization is another path for the same set. That is,
$(\gamma \circ h)\bigl([c,d]\bigr) =
\gamma \bigl([a,b]\bigr)$.
The conditions on the piecewise smooth $h$ mean that
there is some partition $t_0 = c < t_1 < t_2 < \cdots < t_k = d$,
such that $h|_{[t_{j-1},t_j]}$ is continuously differentiable
and $(h|_{[t_{j-1},t_j]})'(t) \not= 0$ for all $t \in [t_{j-1},t_j]$.
Since $h$ is bijective, it is either strictly increasing or
strictly decreasing. So either $(h|_{[t_{j-1},t_j]})'(t) > 0$
for all $t$ or $(h|_{[t_{j-1},t_j]})'(t) < 0$ for all $t$.
\begin{prop} \label{prop:reparamapiecewisesmooth}
If $\gamma \colon [a,b] \to \R^n$ is a piecewise smooth path,
and $\gamma \circ h \colon [c,d] \to \R^n$ is
a piecewise smooth reparametrization, then $\gamma \circ h$
is a piecewise smooth path.
\end{prop}
\begin{proof}
Assume that $h$ preserves orientation, that is, $h$ is strictly
increasing.
If $h \colon [c,d] \to [a,b]$ gives a piecewise smooth reparametrization,
then for some partition
$r_0 = c < r_1 < r_2 < \cdots < r_\ell = d$, the restriction
$h|_{[r_{j-1},r_j]}$ is continuously differentiable with a positive
derivative.
Let $t_0 = a < t_1 < t_2 < \cdots < t_k = b$ be the partition from the
definition of piecewise smooth for $\gamma$ together with the
points $\{ h(r_0), h(r_1), h(r_2), \ldots, h(r_\ell) \}$.
Let $s_j \coloneqq h^{-1}(t_j)$. Then
$s_0 = c < s_1 < s_2 < \cdots < s_k = d$
is a partition that includes (is a refinement of) the
$\{ r_0,r_1,\ldots,r_\ell \}$.
If $\tau \in [s_{j-1},s_j]$, then $h(\tau) \in [t_{j-1},t_j]$
since $h(s_{j-1}) = t_{j-1}$,
$h(s_{j}) = t_j$, and
$h$ is strictly increasing.
Also $h|_{[s_{j-1},s_j]}$ is continuously differentiable, and
$\gamma|_{[t_{j-1},t_j]}$ is also continuously differentiable.
Then
\begin{equation*}
(\gamma \circ h)|_{[s_{j-1},s_{j}]} (\tau)
=
\gamma|_{[t_{j-1},t_{j}]} \bigl( h|_{[s_{j-1},s_j]}(\tau) \bigr) .
\end{equation*}
The function
$(\gamma \circ h)|_{[s_{j-1},s_{j}]}$ is therefore continuously
differentiable and
by the chain rule
\begin{equation*}
\bigl( (\gamma \circ h)|_{[s_{j-1},s_{j}]} \bigr) ' (\tau)
=
\bigl( \gamma|_{[t_{j-1},t_{j}]} \bigr)' \bigl( h(\tau) \bigr)
(h|_{[s_{j-1},s_j]})'(\tau) \not= 0 .
\end{equation*}
Consequently, $\gamma \circ h$ is a piecewise smooth path.
The proof for orientation reversing $h$ is left as an exercise.
\end{proof}
If two paths are simple and their images are the same, it is
left as an exercise that there exists a reparametrization.
Here is where our assumption that $\gamma'$ is never zero is important.
\subsection{Path integral of a one-form}
\begin{defn}
Let $(x_1,x_2,\ldots,x_n) \in \R^n$ be our coordinates.
Given $n$ real-valued continuous functions
$\omega_1,\omega_2,\ldots,\omega_n$ defined on a set $S \subset \R^n$,
we define a \emph{\myindex{one-form}}\index{differential one-form}
to be an object of the form
\glsadd{not:oneform}
\begin{equation*}
\omega = \omega_1 \,dx_1 + \omega_2 \,dx_2 + \cdots + \omega_n \,dx_n .
\end{equation*}
We could represent $\omega$ as a continuous function from $S$ to $\R^n$,
although it is better to think of it as a different object.
\end{defn}
\begin{example}
\begin{equation*}
\omega(x,y) \coloneqq \frac{-y}{x^2+y^2} \,dx + \frac{x}{x^2+y^2} \,dy
\end{equation*}
is a one-form defined on $\R^2 \setminus \{ (0,0) \}$.
\end{example}
\begin{defn}
Let $\gamma \colon [a,b] \to \R^n$ be a smooth path
and let
\begin{equation*}
\omega = \omega_1 \,dx_1 + \omega_2 \,dx_2 + \cdots + \omega_n \,dx_n ,
\end{equation*}
be a one-form defined on the direct image $\gamma\bigl([a,b]\bigr)$.
Write $\gamma = (\gamma_1,\gamma_2,\ldots,\gamma_n)$.
Define:
\begin{equation*}
\begin{split}
\int_{\gamma} \omega
& \coloneqq
\int_a^b
\Bigl(
\omega_1\bigl(\gamma(t)\bigr) \gamma_1^{\:\prime}(t) +
\omega_2\bigl(\gamma(t)\bigr) \gamma_2^{\:\prime}(t) + \cdots +
\omega_n\bigl(\gamma(t)\bigr) \gamma_n^{\:\prime}(t) \Bigr) dt
\\
&\phantom{:}=
\int_a^b
\left(
\sum_{j=1}^n
\omega_j\bigl(\gamma(t)\bigr) \gamma_j^{\:\prime}(t) \right) dt .
\end{split}
\end{equation*}
To remember the definition note that $x_j$ is $\gamma_j(t)$, so
$dx_j$ becomes $\gamma_j^{\:\prime}(t) \, dt$.
If $\gamma$ is piecewise smooth, take the corresponding partition
$t_0 = a < t_1 < t_2 < \ldots < t_k = b$, and assume the partition is
minimal
%\footnote{This restriction is not strictly necessary, but it
%makes the integral immediately well-defined.}
in the sense that $\gamma$ is not differentiable
at $t_1,t_2,\ldots,t_{k-1}$. As each $\gamma|_{[t_{j-1},t_j]}$ is
a smooth path, define
\begin{equation*}
\int_{\gamma} \omega
\coloneqq
\int_{\gamma|_{[t_0,t_1]}} \omega
\,
+
\,
\int_{\gamma|_{[t_1,t_2]}} \omega
\,
+ \, \cdots \, + \,
\int_{\gamma|_{[t_{k-1},t_k]}} \omega .
\end{equation*}
\end{defn}
The notation makes sense from the formula you remember from calculus,
let us state it somewhat informally:
If $x_j(t) = \gamma_j(t)$, then $dx_j = \gamma_j^{\:\prime}(t) \, dt$.
Paths can be cut up or concatenated. The proof is a direct application
of the additivity of the Riemann integral, and is left as an exercise.
The proposition justifies why we defined the integral over a piecewise
smooth path in the way we did, and it justifies that we may as well
have taken any partition not just the minimal one in the definition.
\begin{prop} \label{mv:prop:pathconcat}
Let $\gamma \colon [a,c] \to \R^n$ be a piecewise smooth path,
and $b \in (a,c)$.
Define the piecewise smooth paths
$\alpha \coloneqq \gamma|_{[a,b]}$ and
$\beta \coloneqq \gamma|_{[b,c]}$.
Let $\omega$ be a one-form defined on
$\gamma\bigl([a,c]\bigr)$. Then
\begin{equation*}
\int_{\gamma} \omega =
\int_{\alpha} \omega +
\int_{\beta} \omega .
\end{equation*}
\end{prop}
\begin{example} \label{example:mv:irrotoneformint}
Let the one-form $\omega$ and the path $\gamma \colon [0,2\pi] \to \R^2$ be defined by
\begin{equation*}
\omega(x,y) \coloneqq \frac{-y}{x^2+y^2} \,dx + \frac{x}{x^2+y^2} \,dy,
\qquad
\gamma(t) \coloneqq \bigl(\cos(t),\sin(t)\bigr) .
\end{equation*}
Then
\begin{equation*}
\begin{split}
\int_{\gamma} \omega
& =
\int_0^{2\pi}
\Biggl(
\frac{-\sin(t)}{{\bigl(\cos(t)\bigr)}^2+{\bigl(\sin(t)\bigr)}^2}
\bigl(-\sin(t)\bigr)
+
\frac{\cos(t)}{{\bigl(\cos(t)\bigr)}^2+{\bigl(\sin(t)\bigr)}^2}
\bigl(\cos(t)\bigr)
\Biggr) \, dt
\\
& =
\int_0^{2\pi}
1 \, dt
= 2\pi .
\end{split}
\end{equation*}
Next, parametrize the same curve as
$\alpha \colon [0,1] \to \R^2$ defined by $\alpha(t) \coloneqq \bigl(\cos(2\pi
t),\sin(2 \pi t)\bigr)$, that is,
$\alpha$ is a smooth reparametrization of $\gamma$.
Then
\begin{equation*}
\begin{split}
\int_{\alpha} \omega
& =
\int_0^{1}
\Biggl(
\frac{-\sin(2\pi t)}{{\bigl(\cos(2\pi t)\bigr)}^2+{\bigl(\sin(2\pi t)\bigr)}^2}
\bigl(-2\pi \sin(2\pi t)\bigr)
\\
& \phantom{=\int_0^1\Biggl(~}
+
\frac{\cos(2 \pi t)}{{\bigl(\cos(2 \pi t)\bigr)}^2+{\bigl(\sin(2 \pi t)\bigr)}^2}
\bigl(2 \pi \cos(2 \pi t)\bigr)
\Biggr) \, dt
\\
& =
\int_0^{1}
2\pi \, dt
= 2\pi .
\end{split}
\end{equation*}
Finally, reparametrize with $\beta \colon [0,2\pi] \to \R^2$
as $\beta(t) \coloneqq \bigl(\cos(-t),\sin(-t)\bigr)$. Then
\begin{equation*}
\begin{split}
\int_{\beta} \omega
& =
\int_0^{2\pi}
\Biggl(
\frac{-\sin(-t)}{{\bigl(\cos(-t)\bigr)}^2+{\bigl(\sin(-t)\bigr)}^2}
\bigl(\sin(-t)\bigr)
+
\frac{\cos(-t)}{{\bigl(\cos(-t)\bigr)}^2+{\bigl(\sin(-t)\bigr)}^2}
\bigl(-\cos(-t)\bigr)
\Biggr) \, dt
\\
& =
\int_0^{2\pi}
(-1) \, dt
= -2\pi .
\end{split}
\end{equation*}
The path $\alpha$ is an orientation preserving reparametrization of
$\gamma$, and the integrals are the same. The path $\beta$
is an orientation reversing reparametrization of $\gamma$ and the integral is
minus the original. See \figureref{fig:circlepathrepar}.
\begin{myfigureht}
\includegraphics{figures/circlepathrepar}
\caption{A circular path reparametrized in two different ways. The arrow
indicates the orientation of $\gamma$ and $\alpha$. The path $\beta$ traverses
the circle in the
opposite direction.\label{fig:circlepathrepar}}
\end{myfigureht}
\end{example}
The previous example is not a fluke.
The path integral does not depend on the parametrization of
the curve, the only thing that matters is the direction in which the curve
is traversed.
\begin{prop} \label{mv:prop:pathintrepararam}
Let $\gamma \colon [a,b] \to \R^n$ be a piecewise smooth path and
$\gamma \circ h \colon [c,d] \to \R^n$ a piecewise smooth reparametrization.
Suppose $\omega$ is a one-form defined on the set $\gamma\bigl([a,b]\bigr)$. Then
\begin{equation*}
\int_{\gamma \circ h} \omega =
\begin{cases}
\int_{\gamma} \omega & \text{if } h \text{ preserves orientation,}\\
-\int_{\gamma} \omega & \text{if } h \text{ reverses orientation.}
\end{cases}
\end{equation*}
\end{prop}
\begin{proof}
Assume first that $\gamma$ and $h$ are both smooth.
Write $\omega = \omega_1 \, dx_1 + \omega_2 \, dx_2 + \cdots +
\omega_n \, dx_n$.
Suppose that $h$ is orientation preserving. Use
the change of variables formula for the Riemann integral:
\begin{equation*}
\begin{split}
\int_{\gamma} \omega
& =
\int_a^b
\left(
\sum_{j=1}^n
\omega_j\bigl(\gamma(t)\bigr) \gamma_j^{\:\prime}(t)
\right) dt
\\
& =
\int_c^d
\left(
\sum_{j=1}^n
\omega_j\Bigl(\gamma\bigl(h(\tau)\bigr)\Bigr) \gamma_j^{\:\prime}\bigl(h(\tau)\bigr)
\right) h'(\tau) \, d\tau
\\
& =
\int_c^d
\left(
\sum_{j=1}^n
\omega_j\Bigl(\gamma\bigl(h(\tau)\bigr)\Bigr) (\gamma_j \circ h)'(\tau)
\right) d\tau
=
\int_{\gamma \circ h} \omega .
\end{split}
\end{equation*}
If $h$ is orientation reversing, it swaps the order of the limits on the
integral and introduces a minus sign.
The details, along with finishing the proof for piecewise smooth
paths, is left as \exerciseref{mv:exercise:pathpiece}.
\end{proof}
Due to this proposition (and the exercises), if $\Gamma
\subset \R^n$ is the image of a simple piecewise smooth path
$\gamma\bigl([a,b]\bigr)$, then as long as we somehow indicate the orientation, that
is, the direction in which we traverse the curve, we can write
\begin{equation*}
\int_{\Gamma} \omega ,
\end{equation*}
without mentioning the specific $\gamma$.
Furthermore, for a simple closed path, it does not even matter where we
start the parametrization. See the exercises.
Recall that \emph{simple} means that $\gamma$
is one-to-one except perhaps at the endpoints, in particular
it is one-to-one when restricted to $[a,b)$.
We may relax the condition that the path is simple a little bit.
For example, it is enough to suppose that
$\gamma \colon [a,b] \to \R^n$ is one-to-one except at finitely many points.
%That is, there is a finite set $S \subset [a,b]$
%and $\gamma|_{[a,b]\setminus S}$ is one-to-one.
See \exerciseref{mv:exercise:curveintegral}. But we cannot remove
the condition completely as is
illustrated by the following example.
\begin{example}
Take $\gamma \colon [0,2\pi] \to \R^2$ given by $\gamma(t) \coloneqq
\bigl(\cos(t),\sin(t)\bigr)$, and
$\beta \colon [0,2\pi] \to \R^2$ by $\beta(t) \coloneqq
\bigl(\cos(2t),\sin(2t)\bigr)$. Notice that
$\gamma\bigl([0,2\pi]\bigr) = \beta\bigl([0,2\pi]\bigr)$; we travel
around the same curve, the unit circle. But $\gamma$ goes around the unit
circle once in the counter clockwise direction, and $\beta$ goes around the
unit circle twice (in the same direction).
See \figureref{fig:circlepathrepar2}.
\begin{myfigureht}
\includegraphics{figures/circlepathrepar2}
\caption{Circular path traversed once by
$\gamma \colon [0,2\pi] \to \R^2$
and twice by
$\beta \colon [0,2\pi] \to \R^2$.\label{fig:circlepathrepar2}}
\end{myfigureht}
Compute
\begin{align*}
& \int_{\gamma} -y\, dx + x\,dy
=
\int_0^{2\pi}
\Bigl( \bigl(-\sin(t) \bigr) \bigl(-\sin(t) \bigr) + \cos(t) \cos(t) \Bigr) dt
=
2 \pi,\\
& \int_{\beta} -y\, dx + x\,dy
=
\int_0^{2\pi}
\Bigl( \bigl(-\sin(2t) \bigr) \bigl(-2\sin(2t) \bigr) + \cos(t)
\bigl(2\cos(t)\bigr) \Bigr) dt
=
4 \pi.
\end{align*}
\end{example}
It is sometimes convenient to define a path integral over $\gamma \colon
[a,b] \to \R^n$ that is not a path.
Define
\glsadd{not:pathintegralomega}
\begin{equation*}
\int_{\gamma} \omega \coloneqq \int_a^b
\left(
\sum_{j=1}^n
\omega_j\bigl(\gamma(t)\bigr) \gamma_j^{\:\prime}(t)
\right) dt
\end{equation*}
for every continuously differentiable $\gamma$. A
case that comes up naturally is when $\gamma$ is constant. Then
$\gamma^{\:\prime}(t) = 0$ for all $t$, and $\gamma\bigl([a,b]\bigr)$ is a single
point, which we regard as a \myquote{curve} of length zero. Then,
$\int_{\gamma} \omega = 0$ for every $\omega$.
\subsection{Path integral of a function}
Next, we integrate a function against the so-called
\emph{\myindex{arc-length measure}} $ds$. The geometric picture we have in mind
is the area under the graph of the function over a path.
Imagine a fence erected over $\gamma$ with height given by the function
and the integral is the area of the fence.
See \figureref{fig:fenceintegral}.
\begin{myfigureht}
\includegraphics{figures/fenceintegral}
\caption{A path $\gamma \colon [a,b] \to \R^2$ in the $xy$-plane (bold curve), and a function
$z=f(x,y)$ graphed above it in the $z$ direction. The integral is the
shaded area depicted.\label{fig:fenceintegral}}
\end{myfigureht}
\begin{defn}
Suppose $\gamma \colon [a,b] \to \R^n$ is a smooth path, and $f$ is a
continuous function defined on the image $\gamma\bigl([a,b]\bigr)$. Then
define
\glsadd{not:lineintegralf}
\begin{equation*}
\int_{\gamma} f \,ds \coloneqq
\int_a^b f\bigl( \gamma(t) \bigr) \snorm{\gamma^{\:\prime}(t)} \, dt .
\end{equation*}
To emphasize the variables we may use
\begin{equation*}
\int_{\gamma} f(x) \,ds(x) \coloneqq \int_{\gamma} f \,ds .
\end{equation*}
The definition for a piecewise smooth path is similar as before and is left
to the reader.
\end{defn}
The path integral of a function is also independent of the parametrization,
and in this case, the orientation does not matter.
\begin{prop} \label{mv:prop:lineintrepararam}
Let $\gamma \colon [a,b] \to \R^n$ be a piecewise smooth path and
$\gamma \circ h \colon [c,d] \to \R^n$ a piecewise smooth reparametrization.
Suppose $f$ is a continuous function defined on the set
$\gamma\bigl([a,b]\bigr)$. Then
\begin{equation*}
\int_{\gamma \circ h} f\, ds = \int_{\gamma} f\, ds .
\end{equation*}
\end{prop}
\begin{proof}
Suppose $h$ is orientation preserving and that $\gamma$ and $h$
are both smooth. Then
\begin{equation*}
\begin{split}
\int_{\gamma} f \, ds
& =
\int_a^b
f\bigl(\gamma(t)\bigr) \snorm{\gamma^{\:\prime}(t)} \, dt
\\
& =
\int_c^d
f\Bigl(\gamma\bigl(h(\tau)\bigr)\Bigr)
\snorm{\gamma^{\:\prime}\bigl(h(\tau)\bigr)} h'(\tau) \, d\tau
\\
& =
\int_c^d
f\Bigl(\gamma\bigl(h(\tau)\bigr)\Bigr)
\snorm{\gamma^{\:\prime}\bigl(h(\tau)\bigr) h'(\tau)} \, d\tau
\\
& =