-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathsonic.py
333 lines (270 loc) · 11.7 KB
/
sonic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import os
import torch
import torch.utils.checkpoint
from PIL import Image
import numpy as np
from omegaconf import OmegaConf
from tqdm import tqdm
import cv2
from diffusers import AutoencoderKLTemporalDecoder
from diffusers.schedulers import EulerDiscreteScheduler
from transformers import WhisperModel, CLIPVisionModelWithProjection, AutoFeatureExtractor
from src.utils.util import save_videos_grid, seed_everything
from src.dataset.test_preprocess import process_bbox, image_audio_to_tensor
from src.models.base.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel, add_ip_adapters
from src.pipelines.pipeline_sonic import SonicPipeline
from src.models.audio_adapter.audio_proj import AudioProjModel
from src.models.audio_adapter.audio_to_bucket import Audio2bucketModel
from src.utils.RIFE.RIFE_HDv3 import RIFEModel
from src.dataset.face_align.align import AlignImage
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
def test(
pipe,
config,
wav_enc,
audio_pe,
audio2bucket,
image_encoder,
width,
height,
batch
):
for k, v in batch.items():
if isinstance(v, torch.Tensor):
batch[k] = v.unsqueeze(0).to(pipe.device).float()
ref_img = batch['ref_img']
clip_img = batch['clip_images']
face_mask = batch['face_mask']
image_embeds = image_encoder(
clip_img
).image_embeds
audio_feature = batch['audio_feature']
audio_len = batch['audio_len']
step = int(config.step)
window = 3000
audio_prompts = []
last_audio_prompts = []
for i in range(0, audio_feature.shape[-1], window):
audio_prompt = wav_enc.encoder(audio_feature[:,:,i:i+window], output_hidden_states=True).hidden_states
last_audio_prompt = wav_enc.encoder(audio_feature[:,:,i:i+window]).last_hidden_state
last_audio_prompt = last_audio_prompt.unsqueeze(-2)
audio_prompt = torch.stack(audio_prompt, dim=2)
audio_prompts.append(audio_prompt)
last_audio_prompts.append(last_audio_prompt)
audio_prompts = torch.cat(audio_prompts, dim=1)
audio_prompts = audio_prompts[:,:audio_len*2]
audio_prompts = torch.cat([torch.zeros_like(audio_prompts[:,:4]), audio_prompts, torch.zeros_like(audio_prompts[:,:6])], 1)
last_audio_prompts = torch.cat(last_audio_prompts, dim=1)
last_audio_prompts = last_audio_prompts[:,:audio_len*2]
last_audio_prompts = torch.cat([torch.zeros_like(last_audio_prompts[:,:24]), last_audio_prompts, torch.zeros_like(last_audio_prompts[:,:26])], 1)
ref_tensor_list = []
audio_tensor_list = []
uncond_audio_tensor_list = []
motion_buckets = []
for i in tqdm(range(audio_len//step)):
audio_clip = audio_prompts[:,i*2*step:i*2*step+10].unsqueeze(0)
audio_clip_for_bucket = last_audio_prompts[:,i*2*step:i*2*step+50].unsqueeze(0)
motion_bucket = audio2bucket(audio_clip_for_bucket, image_embeds)
motion_bucket = motion_bucket * 16 + 16
motion_buckets.append(motion_bucket[0])
cond_audio_clip = audio_pe(audio_clip).squeeze(0)
uncond_audio_clip = audio_pe(torch.zeros_like(audio_clip)).squeeze(0)
ref_tensor_list.append(ref_img[0])
audio_tensor_list.append(cond_audio_clip[0])
uncond_audio_tensor_list.append(uncond_audio_clip[0])
video = pipe(
ref_img,
clip_img,
face_mask,
audio_tensor_list,
uncond_audio_tensor_list,
motion_buckets,
height=height,
width=width,
num_frames=len(audio_tensor_list),
decode_chunk_size=config.decode_chunk_size,
motion_bucket_scale=config.motion_bucket_scale,
fps=config.fps,
noise_aug_strength=config.noise_aug_strength,
min_guidance_scale1=config.min_appearance_guidance_scale, # 1.0,
max_guidance_scale1=config.max_appearance_guidance_scale,
min_guidance_scale2=config.audio_guidance_scale, # 1.0,
max_guidance_scale2=config.audio_guidance_scale,
overlap=config.overlap,
shift_offset=config.shift_offset,
frames_per_batch=config.n_sample_frames,
num_inference_steps=config.num_inference_steps,
i2i_noise_strength=config.i2i_noise_strength
).frames
# Concat it with pose tensor
# pose_tensor = torch.stack(pose_tensor_list,1).unsqueeze(0)
video = (video*0.5 + 0.5).clamp(0, 1)
video = torch.cat([video.to(pipe.device)], dim=0).cpu()
return video
class Sonic():
config_file = os.path.join(BASE_DIR, 'config/inference/sonic.yaml')
config = OmegaConf.load(config_file)
def __init__(self,
device_id=0,
enable_interpolate_frame=True,
):
config = self.config
config.use_interframe = enable_interpolate_frame
device = 'cuda:{}'.format(device_id) if device_id > -1 else 'cpu'
config.pretrained_model_name_or_path = os.path.join(BASE_DIR, config.pretrained_model_name_or_path)
vae = AutoencoderKLTemporalDecoder.from_pretrained(
config.pretrained_model_name_or_path,
subfolder="vae",
variant="fp16")
val_noise_scheduler = EulerDiscreteScheduler.from_pretrained(
config.pretrained_model_name_or_path,
subfolder="scheduler")
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
config.pretrained_model_name_or_path,
subfolder="image_encoder",
variant="fp16")
unet = UNetSpatioTemporalConditionModel.from_pretrained(
config.pretrained_model_name_or_path,
subfolder="unet",
variant="fp16")
add_ip_adapters(unet, [32], [config.ip_audio_scale])
audio2token = AudioProjModel(seq_len=10, blocks=5, channels=384, intermediate_dim=1024, output_dim=1024, context_tokens=32).to(device)
audio2bucket = Audio2bucketModel(seq_len=50, blocks=1, channels=384, clip_channels=1024, intermediate_dim=1024, output_dim=1, context_tokens=2).to(device)
unet_checkpoint_path = os.path.join(BASE_DIR, config.unet_checkpoint_path)
audio2token_checkpoint_path = os.path.join(BASE_DIR, config.audio2token_checkpoint_path)
audio2bucket_checkpoint_path = os.path.join(BASE_DIR, config.audio2bucket_checkpoint_path)
unet.load_state_dict(
torch.load(unet_checkpoint_path, map_location="cpu"),
strict=True,
)
audio2token.load_state_dict(
torch.load(audio2token_checkpoint_path, map_location="cpu"),
strict=True,
)
audio2bucket.load_state_dict(
torch.load(audio2bucket_checkpoint_path, map_location="cpu"),
strict=True,
)
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
elif config.weight_dtype == "fp32":
weight_dtype = torch.float32
elif config.weight_dtype == "bf16":
weight_dtype = torch.bfloat16
else:
raise ValueError(
f"Do not support weight dtype: {config.weight_dtype} during training"
)
whisper = WhisperModel.from_pretrained(os.path.join(BASE_DIR, 'checkpoints/whisper-tiny/')).to(device).eval()
whisper.requires_grad_(False)
self.feature_extractor = AutoFeatureExtractor.from_pretrained(os.path.join(BASE_DIR, 'checkpoints/whisper-tiny/'))
det_path = os.path.join(BASE_DIR, os.path.join(BASE_DIR, 'checkpoints/yoloface_v5m.pt'))
self.face_det = AlignImage(device, det_path=det_path)
if config.use_interframe:
rife = RIFEModel(device=device)
rife.load_model(os.path.join(BASE_DIR, 'checkpoints', 'RIFE/'))
self.rife = rife
image_encoder.to(weight_dtype)
vae.to(weight_dtype)
unet.to(weight_dtype)
pipe = SonicPipeline(
unet=unet,
image_encoder=image_encoder,
vae=vae,
scheduler=val_noise_scheduler,
)
pipe = pipe.to(device=device, dtype=weight_dtype)
self.pipe = pipe
self.whisper = whisper
self.audio2token = audio2token
self.audio2bucket = audio2bucket
self.image_encoder = image_encoder
self.device = device
print('init done')
def preprocess(self,
image_path, expand_ratio=1.0):
face_image = cv2.imread(image_path)
h, w = face_image.shape[:2]
_, _, bboxes = self.face_det(face_image, maxface=True)
face_num = len(bboxes)
bbox = []
if face_num > 0:
x1, y1, ww, hh = bboxes[0]
x2, y2 = x1 + ww, y1 + hh
bbox = x1, y1, x2, y2
bbox_s = process_bbox(bbox, expand_radio=expand_ratio, height=h, width=w)
return {
'face_num': face_num,
'crop_bbox': bbox_s,
}
def crop_image(self,
input_image_path,
output_image_path,
crop_bbox):
face_image = cv2.imread(input_image_path)
crop_image = face_image[crop_bbox[1]:crop_bbox[3], crop_bbox[0]:crop_bbox[2]]
cv2.imwrite(output_image_path, crop_image)
@torch.no_grad()
def process(self,
image_path,
audio_path,
output_path,
min_resolution=512,
inference_steps=25,
dynamic_scale=1.0,
keep_resolution=False,
seed=None):
config = self.config
device = self.device
pipe = self.pipe
whisper = self.whisper
audio2token = self.audio2token
audio2bucket = self.audio2bucket
image_encoder = self.image_encoder
# specific parameters
if seed:
config.seed = seed
config.num_inference_steps = inference_steps
config.motion_bucket_scale = dynamic_scale
seed_everything(config.seed)
video_path = output_path.replace('.mp4', '_noaudio.mp4')
audio_video_path = output_path
imSrc_ = Image.open(image_path).convert('RGB')
raw_w, raw_h = imSrc_.size
test_data = image_audio_to_tensor(self.face_det, self.feature_extractor, image_path, audio_path, limit=config.frame_num, image_size=min_resolution, area=config.area)
if test_data is None:
return -1
height, width = test_data['ref_img'].shape[-2:]
if keep_resolution:
resolution = f'{raw_w//2*2}x{raw_h//2*2}'
else:
resolution = f'{width}x{height}'
video = test(
pipe,
config,
wav_enc=whisper,
audio_pe=audio2token,
audio2bucket=audio2bucket,
image_encoder=image_encoder,
width=width,
height=height,
batch=test_data,
)
if config.use_interframe:
rife = self.rife
out = video.to(device)
results = []
video_len = out.shape[2]
for idx in tqdm(range(video_len-1), ncols=0):
I1 = out[:, :, idx]
I2 = out[:, :, idx+1]
middle = rife.inference(I1, I2).clamp(0, 1).detach()
results.append(out[:, :, idx])
results.append(middle)
results.append(out[:, :, video_len-1])
video = torch.stack(results, 2).cpu()
save_videos_grid(video, video_path, n_rows=video.shape[0], fps=config.fps * 2 if config.use_interframe else config.fps)
ffmpeg_command = f'ffmpeg -i "{video_path}" -i "{audio_path}" -s {resolution} -vcodec libx264 -acodec aac -crf 18 -shortest -y "{audio_video_path}"'
os.system(ffmpeg_command)
os.remove(video_path) # Use os.remove instead of rm for Windows compatibility
return 0