-
Notifications
You must be signed in to change notification settings - Fork 0
/
Human RxODE population model popgen parameters.R
453 lines (379 loc) · 19.9 KB
/
Human RxODE population model popgen parameters.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
#author: Joris Jean van der Lugt
#date: 22-03-2023
#Human population model parameter file (popgen)
library(RxODE)
library(tidyverse)
library(readxl)
library(readr)
library(truncnorm)
library(reshape2)
library(sensitivity)
library(PKNCA)
#Simulations
set.seed(15204) #to ensure a reproducible output
amount.units <-"μmol"
time.units <-"h"
nbr.doses <-12
dosing.interval <-0.8 # time between dosing in hours
time.0 <-0 #time start dosing
time.end <-24 #time end of simulation
time.frame <-0.05 #time steps of simulation
N <-1000 #Number of males
NF <-1000 #Number of females
Oral_Dose_in_mg_bw <-0 #Dose in mg/kg-bw
Inhalation_Dose_in_mg_bw<-2.8 #The inhaled dose in mg/kg
iv_dose_in_mg_bw <-0 #IV administered dose in mg/kg/bw
Volume_exposure_chamber <-10 #volume exposure chamber in L
MW <-132.16 #The molecular weight of Cinnamaldehyde
#Importing the popgen data set
pg_m_par <- read_csv("popgen male parameters version 06-04-2022.csv")
pg_f_par <- read_csv("popgen female parameters version 09-08-2022.csv")
colnames <-c("Age","Height","BW","V_L","V_F",
"V_B","V_A","V_V","V_SI","V_Pu","V_RP","V_SP","Q_C","Q_F","Q_L","Q_SI","Q_RP","Q_SP")
par_var_m_pop <- length(colnames)
par_var_f_pop <- length(colnames)
#create data frames for population males
var_m_pop <- matrix(NA, nrow = N, ncol = par_var_m_pop)
colnames(var_m_pop) <- colnames
var_m_pop <- as.data.frame(var_m_pop)
#create data frames for the population of females
var_f_pop <- matrix(NA, nrow = NF, ncol = par_var_f_pop)
colnames(var_f_pop) <- colnames
var_f_pop <- as.data.frame(var_f_pop)
#--Physico-chemical parameters--#
#-Cinnamaldehyde-#
var_m_pop$P_F <- 47.75 #Fat/Blood partition coefficient
var_m_pop$P_L <- 1.83 #Fat/Blood partition coefficient
var_m_pop$P_SI <- 1.81 #Small intestine/Blood partition coefficients
var_m_pop$P_RP <- 1.81 #Richly perfused tissues/Blood partition coefficients
var_m_pop$P_B <- 0.29 #Blood/Air Partition Coefficient
var_m_pop$P_SP <- 1.50 #Slowly perfused tissues/Blood partition coefficients
var_m_pop$P_Pu <- 1.81 #Lung/Blood partition coefficients
#-Cinnamyl Alcohol-#
var_m_pop$P_OH_F <- 49.26 #Fat/Blood partition coefficient
var_m_pop$P_OH_L <- 1.18 #Fat/Blood partition coefficient
var_m_pop$P_OH_SI <- 1.18 #Small intestine/Blood partition coefficients
var_m_pop$P_OH_RP <- 1.18 #Richly perfused tissues/Blood partition coefficients
var_m_pop$P_OH_SP <- 1.53 #Slowly perfused tissues/Blood partition coefficients
var_m_pop$P_OH_Pu <- 1.18 #Lung/Blood partition coefficients
#-Cinnamaldehyde-#
var_f_pop$P_F <- 47.75 #Fat/Blood partition coefficient
var_f_pop$P_L <- 1.83 #Fat/Blood partition coefficient
var_f_pop$P_SI <- 1.81 #Small intestine/Blood partition coefficients
var_f_pop$P_RP <- 1.81 #Richly perfused tissues/Blood partition coefficients
var_f_pop$P_B <- 0.29 #Blood/Air Partition Coefficient
var_f_pop$P_SP <- 1.50 #Slowly perfused tissues/Blood partition coefficients
var_f_pop$P_Pu <- 1.81 #Lung/Blood partition coefficients
#-Cinnamyl Alcohol-#
var_f_pop$P_OH_F <- 49.26 #Fat/Blood partition coefficient
var_f_pop$P_OH_L <- 1.18 #Fat/Blood partition coefficient
var_f_pop$P_OH_SI <- 1.18 #Small intestine/Blood partition coefficients
var_f_pop$P_OH_RP <- 1.18 #Richly perfused tissues/Blood partition coefficients
var_f_pop$P_OH_SP <- 1.53 #Slowly perfused tissues/Blood partition coefficients
var_f_pop$P_OH_Pu <- 1.18 #Lung/Blood partition coefficients
#--Physiological Parameters--#
#Population specific parameters (Male)
var_m_pop$Age <- pg_m_par$Age #Age (years)
var_m_pop$Height <- pg_m_par$Height #Body height (cm)
var_m_pop$BW <- pg_m_par$'Body Mass' #Body weight (kg)
#-Tissues volume in L-#
var_m_pop$V_L <-pg_m_par$`Liver mass` #Volume liver tissue (L)
var_m_pop$V_F <-pg_m_par$`Adipose mass` #Volume adipose tissue (L)
var_m_pop$V_B <-(((13.1 * var_m_pop$Height + 18.05 * var_m_pop$BW - 480) / 0.5723) / 1000)#Volume blood (L)
var_m_pop$V_A <-var_m_pop$V_B / 3 #Volume arterial blood (L)
var_m_pop$V_V <-var_m_pop$V_B * (2/3) #Volume venous blood (L)
var_m_pop$V_SI <-pg_m_par$`Small intestine mass` #Volume Small intestine (L)
var_m_pop$V_Pu <-pg_m_par$`Lung mass` #Volume Lung tissue (L)
var_m_pop$V_RP <-pg_m_par$`Richly Perfused mass` #Volume richly perfused tissue (L)
var_m_pop$V_SP <-pg_m_par$`Slowly Perfused mass` #Volume slowly perfused tissue (L)
#-Cardiac parameters-#
var_m_pop$Q_C <- pg_m_par$`Cardiac Output` #Cardiac output (L/h)
var_m_pop$Q_SI <- pg_m_par$`Small intestine flow` #Blood flow to the gut (L/h)
var_m_pop$Q_F <- pg_m_par$`Adipose flow` #Blood flow to adipose tissue (L/h)
var_m_pop$Q_L <- pg_m_par$`Liver flow` #Blood flow to liver(L/h)
var_m_pop$Q_Pu <- pg_m_par$`Lung flow` #Blood flow to lungs(L/h)
var_m_pop$Q_RP <- pg_m_par$`Richly Perfused flow` #Blood flow to richly perfused tissue (L/h)
var_m_pop$Q_SP <- pg_m_par$`Slowly Perfused flow` #Blood flow to slowly perfused tissue (L/h)
var_m_pop$check <- var_m_pop$Q_SI + var_m_pop$Q_F + var_m_pop$Q_L + var_m_pop$Q_RP + var_m_pop$Q_SP
#Pulmonary ventilation
var_m_pop$P_V <-rnorm(N,mean=540,sd=3)
#----GSH parameters----#
#--GSH synthesis in μmol/kg tissue/h--#
var_m_pop$G_SYN_L <- 869 * var_m_pop$V_L #Liver
var_m_pop$G_SYN_SI <- 78 * var_m_pop$V_SI #Small intestine
#-Apparent first order rate constant GSH turn over(RAT?) per h-#
var_m_pop$k_L_GLOS <- 0.142 #Liver
var_m_pop$k_SI_GLOS <- 0.044 #Small intestine
#--Initial GSH concentration--#
var_m_pop$init_GSH_L <- 6120 * var_m_pop$V_L #initial GSH concentration in the liver in μmol
var_m_pop$init_GSH_SI <- 1780 * var_m_pop$V_SI #initial GSH concentration in the small intestine in μmol
var_m_pop$k_GSH <- 6.6 * 10^(-4) #The second-order rate constant of the chemical reaction of cinnamaldehyde with GSH in μmol/h
#----Protein reactive sites in μmol/kg tissue----#
var_m_pop$C_PRO_L <- 5319 * var_m_pop$V_L #Liver
var_m_pop$C_PRO_SI <- 245 * var_m_pop$V_SI #Small intestine
#--Chemical parameters--#
var_m_pop$Ka <- 0.62 #Absorption rate constant for uptake in the Small intestine in per H
var_m_pop$S9_scaling_L <- 143 * (var_m_pop$V_L * 1000) #scaling factor for S9 fraction per g tissue
#----Liver----#
#-first rate order constants-#
var_m_pop$k_L_OH <- 4.2e-02 * 60/1000 * var_m_pop$S9_scaling_L #Scaled first rate order constant for the enzymatic oxidation of cinnamyl alcohol in the liver in μmol/h
#--Michaelis menten constants--#
var_m_pop$Km_L_CA <- 8.5 #Km for enzymatic oxidation of cinnamaldehyde into Cinnamic acid in the liver in μM
var_m_pop$Km_L_AO <- 330 #Km for enzymatic reduction of cinnamaldehyde into cinnamyl alcOHol in the liver in μM
var_m_pop$Km_L_GST <- 1.7*10^3 #Km for enzymatic conjugation of cinnamaldehyde with GST in the liver in μM
var_m_pop$Km_L_GST_G <- 100 #Km toward GSH for enzymatic conjugation of cinnamaldehyde in the small intestine μM
#--Vmax values--#
var_m_pop$Vsmax_L_CA <- 9.7* 60/1000 * var_m_pop$S9_scaling_L #Scaled Vmax for enzymatic oxidation of cinnamaldehyde in the liver in μmol/h
var_m_pop$Vsmax_L_AO <- 73 * 60/1000 * var_m_pop$S9_scaling_L #Scaled Vmax for enzymatic reduction of cinnamaldehyde in the liver in μmol/h
var_m_pop$Vsmax_L_GST <- 32 * 60/1000 * var_m_pop$S9_scaling_L #Scaled Vmax for enzymatic conjugation of cinnamaldehyde with GSH in the liver in μmol/h
#----Small intestines----#
var_m_pop$S9_scaling_SI <- 11.4 * (var_m_pop$V_SI *1000) #scaling factor fraction S9 protein per g tissue
#--Michaelis menten constants--#
var_m_pop$Km_SI_CA <- 70 #Km for enzymatic oxidation of cinnamaldehyde into cinnamic acid in the Small Intestine in μM
var_m_pop$Km_SI_AO <- 90 #Km for enzymatic reduction of cinnamaldehyde into cinnamyl alcOHol in the Small Intestine in μM
var_m_pop$Km_SI_OH <- 290 #Km for enzymatic oxidation of cinnamly alcOHol into cinnamaldehyde in the Small Intestine in μM
#-Vmax values-#
var_m_pop$Vsmax_SI_CA <- 21 * 60/1000 * var_m_pop$S9_scaling_SI #Scaled Vmax for enzymatic oxidation of cinnamaldehyde into Cinnamic acid in the Small Intestine in μmol/h
var_m_pop$Vsmax_SI_AO <- 30 * 60/1000* var_m_pop$S9_scaling_SI #Scaled Vmax for enzymatic reduction of cinnamaldehyde into Cinnamyl alcOHol in the Small Intestine in μmol/h
var_m_pop$Vsmax_SI_OH <- 5.0 * 60/1000* var_m_pop$S9_scaling_SI #Scaled Vmax for enzymatic Oxidation of cinnamyl alcohol into cinnamaldehyde in the Small Intestine in μmol/h
#---Dose male---#
var_m_pop$Oral_Dose <- (Oral_Dose_in_mg_bw * var_m_pop$BW)/ MW * 1e+3 #The administered dose in μmol
var_m_pop$Inhalation_Dose <- (Inhalation_Dose_in_mg_bw * var_m_pop$BW)/ MW * 1e+3 #The inhaled dose in μmol
var_m_pop$Volume_exposure_chamber <-Volume_exposure_chamber
##------------Population specific parameters (female)--------------------##
var_f_pop$Age <- pg_f_par$Age #Age (years)
var_f_pop$Height <- pg_f_par$Height #Body height baseline (cm)
var_f_pop$BW <- pg_f_par$`Body Mass` #Body weight (kg)
#-Tissues volumes in % body weight-#
var_f_pop$V_L <-pg_f_par$`Liver mass` #Volume liver tissue (l)
var_f_pop$V_F <-pg_f_par$`Adipose mass` #Volume adipose tissue (L)
var_f_pop$V_B <-(((35.5 * var_f_pop$Height + 2.27 * var_f_pop$BW - 3382)/ 0.6178 )/ 1000) #Volume blood (L)
var_f_pop$V_A <-var_f_pop$V_B / 3 #Volume arterial blood (L)
var_f_pop$V_V <-var_f_pop$V_B * (2/3) #Volume venous blood (L)
var_f_pop$V_SI <-pg_f_par$`Small intestine mass` #Volume small intestine (L)
var_f_pop$V_Pu <-pg_f_par$`Lung mass` #Volume lung (L)
var_f_pop$V_RP <-pg_f_par$`Richly Perfused mass` #Volume richly perfused tissue (L)
var_f_pop$V_SP <-pg_f_par$`Slowly Perfused mass` #Volume slowly perfused tissue (L)
#-Cardiac parameters-#
var_f_pop$Q_C <- pg_f_par$`Cardiac Output` #Cardiac output (L/h)
var_f_pop$Q_SI <- pg_f_par$`Small intestine flow` #Blood flow to the gut (L/h)
var_f_pop$Q_F <- pg_f_par$`Adipose flow` #Blood flow to adipose tissue (L/h)
var_f_pop$Q_L <- pg_f_par$`Liver flow` #Blood flow to liver via hepatic artery (L/h)
var_f_pop$Q_RP <- pg_f_par$`Richly Perfused flow` #Blood flow to richly perfused tissue (L/h)
var_f_pop$Q_SP <- pg_f_par$`Slowly Perfused flow` #Blood flow to Slowly perfused tissue (L/h)
var_f_pop$Q_Pu <- pg_f_par$`Lung flow` #Blood flow to Lung tissue (L/h)
var_f_pop$check <- var_f_pop$Q_SI + var_f_pop$Q_F + var_f_pop$Q_L + var_f_pop$Q_RP + var_f_pop$Q_SP #check if total adds up to Q_C
#Pulmonary ventilation
var_f_pop$P_V <-rnorm(N,mean=390,sd=3) #Pulmonary ventilation in L/h
#----GSH parameters female----#
#--GSH synthesis in μmol/kg tissue/h--#
var_f_pop$G_SYN_L <- 869 * var_f_pop$V_L #Liver
var_f_pop$G_SYN_SI <- 78 * var_f_pop$V_SI #Small intestine
#-Apparent first order rate constant GSH turn over(RAT?) per h-#
var_f_pop$k_L_GLOS <- 0.142 #Liver
var_f_pop$k_SI_GLOS <- 0.044 #Small intestine
#--Initial GSH concentration--#
var_f_pop$init_GSH_L <- 6120 * var_f_pop$V_L #initial GSH concentration in the liver in μmol/kg
var_f_pop$init_GSH_SI <- 1780 * var_f_pop$V_SI #initial GSH concentration in the small intestine in μmol/kg
var_f_pop$k_GSH <- 6.6 * 10^(-4) #The second-order rate constant of the chemical reaction of cinnamaldehyde with GSH in μmol/h
#----Protein reactive sites in μmol/kg tissue----#
var_f_pop$C_PRO_L <- 5319 * var_f_pop$V_L #Liver
var_f_pop$C_PRO_SI <- 245 * var_f_pop$V_SI #Small intestine
#--Chemical parameters--#
var_f_pop$Ka <- 0.62 #Absorption rate constant for uptake in the Small intestine in per H
#----Liver----#
var_f_pop$S9_scaling_L <- 143 * (var_f_pop$V_L * 1000)#scaling factor for S9 fraction per g tissue
#----Liver----#
#-first rate order constants-#
var_f_pop$k_L_OH <- 4.2e-02 * 60/1000 * var_f_pop$S9_scaling_L #Scaled first rate order constant for the enzymatic oxidation of cinnamyl alcohol in the liver in μmol/h
#--Michaelis menten constants--#
var_f_pop$Km_L_CA <- 8.5 #Km for enzymatic oxidation of cinnamaldehyde into Cinnamic acid in the liver in μM
var_f_pop$Km_L_AO <- 330 #Km for enzymatic reduction of cinnamaldehyde into cinnamyl alcOHol in the liver in μM
var_f_pop$Km_L_GST <- 1.7*10^3 #Km for enzymatic conjugation of cinnamaldehyde with GST in the liver in μM
var_f_pop$Km_L_GST_G <- 100 #Km toward GSH for enzymatic conjugation of cinnamaldehyde in the liver (μM)
#--Vmax values--#
var_f_pop$Vsmax_L_CA <- 9.7 * 60/1000 * var_f_pop$S9_scaling_L #Scaled Vmax for enzymatic oxidation of cinnamaldehyde in the liver in μmol/h
var_f_pop$Vsmax_L_AO <- 73 * 60/1000 *var_f_pop$S9_scaling_L #Scaled Vmax for enzymatic reduction of cinnamaldehyde in the liver in μmol/h
var_f_pop$Vsmax_L_GST <- 32 * 60/1000 * var_f_pop$S9_scaling_L #Scaled Vmax for enzymatic conjugation of cinnamaldehyde with GSH in the liver in μmol/h
#----Small intestines----#
var_f_pop$S9_scaling_SI <- 11.4 * (var_f_pop$V_SI *1000) #scaling factor fraction S9 protein per g tissue
#--Michaelis menten constants--#
var_f_pop$Km_SI_CA <- 70 #Km for enzymatic oxidation of cinnamaldehyde into cinnamic acid in the Small Intestine in μM
var_f_pop$Km_SI_AO <- 90 #Km for enzymatic reduction of cinnamaldehyde into cinnamyl alcOHol in the Small Intestine in μM
var_f_pop$Km_SI_OH <- 290 #Km for enzymatic oxidation of cinnamly alcOHol into cinnamaldehyde in the Small Intestine in μM
#-Vmax values-#
var_f_pop$Vsmax_SI_CA <- 21 * 60/1000 * var_f_pop$S9_scaling_SI#Scaled Vmax for enzymatic oxidation of cinnamaldehyde into Cinnamic acid in the Small Intestine in μmol/h
var_f_pop$Vsmax_SI_AO <- 30 * 60/1000 * var_f_pop$S9_scaling_SI #Scaled Vmax for enzymatic reduction of cinnamaldehyde into Cinnamyl alcOHol in the Small Intestine in μmol/h
var_f_pop$Vsmax_SI_OH <- 5.0 * 60/1000* var_f_pop$S9_scaling_SI #Scaled Vmax for enzymatic Oxidation of cinnamyl alcohol into cinnamaldehyde in the Small Intestine in μmol/h
#---Dose female---#
var_f_pop$Oral_Dose <-(Oral_Dose_in_mg_bw * var_f_pop$BW)/ MW * 1e+3 #The administered dose in μmol
var_f_pop$Inhalation_Dose <- (Inhalation_Dose_in_mg_bw * var_f_pop$BW)/ MW * 1e+3 #The inhaled dose in μmol
var_f_pop$Volume_exposure_chamber <-Volume_exposure_chamber
#Combine data sets Male and Female for PBK model
phys <- rbind(var_m_pop,var_f_pop)
#ONLY MALE
#phys <- var_m_pop
#ONLY FEMALE
# phys <- var_f_pop
P_F<-phys$P_F
P_L<-phys$P_L
P_SI<-phys$P_SI
P_RP<-phys$P_RP
P_B<-phys$P_B
P_SP<-phys$P_SP
P_Pu<-phys$P_Pu
P_OH_F<-phys$P_OH_F
P_OH_L<-phys$P_OH_L
P_OH_SI<-phys$P_OH_SI
P_OH_RP<-phys$P_OH_RP
P_OH_SP<-phys$P_OH_SP
P_OH_Pu<-phys$P_OH_Pu
Age <- phys$Age
Height <- phys$Height
BW<-phys$BW
V_L<-phys$V_L
V_F<-phys$V_F
V_B <- phys$V_B
V_A<-phys$V_A
V_V<-phys$V_V
V_SI<-phys$V_SI
V_Pu<-phys$V_Pu
V_RP<-phys$V_RP
V_SP<-phys$V_SP
Q_C<-phys$Q_C
Q_SI<-phys$Q_SI
Q_F<-phys$Q_F
Q_L<-phys$Q_L
Q_Pu<-phys$Q_Pu
Q_RP<-phys$Q_RP
Q_SP<-phys$Q_SP
P_V<-phys$P_V
G_SYN_L<-phys$G_SYN_L
G_SYN_SI<-phys$G_SYN_SI
k_L_GLOS<-phys$k_L_GLOS
k_SI_GLOS<-phys$k_SI_GLOS
init_GSH_L<-phys$init_GSH_L
init_GSH_SI<-phys$init_GSH_SI
k_GSH<-phys$k_GSH
C_PRO_L<-phys$C_PRO_L
C_PRO_SI<-phys$C_PRO_SI
Ka<-phys$Ka
k_L_OH <- phys$k_L_OH
Km_L_CA<-phys$Km_L_CA
Km_L_AO<-phys$Km_L_AO
Km_L_GST<-phys$Km_L_GST
Km_L_GST_G<-phys$Km_L_GST_G
Vsmax_L_CA<-phys$Vsmax_L_CA
Vsmax_L_AO<-phys$Vsmax_L_AO
Vsmax_L_GST<-phys$Vsmax_L_GST
Km_SI_CA<-phys$Km_SI_CA
Km_SI_AO<-phys$Km_SI_AO
Km_SI_OH<-phys$Km_SI_OH
Vsmax_SI_CA<-phys$Vsmax_SI_CA
Vsmax_SI_AO<-phys$Vsmax_SI_AO
Vsmax_SI_OH<-phys$Vsmax_SI_OH
Oral_Dose<- phys$Oral_Dose
Inhalation_Dose<-phys$Inhalation_Dose
Volume_exposure_chamber<-phys$Volume_exposure_chamber
parameters=cbind(P_F,
P_L,
P_SI,
P_RP,
P_SP,
P_B,
P_Pu,
P_OH_F,
P_OH_L,
P_OH_SI,
P_OH_RP,
P_OH_SP,
P_OH_Pu,
Age,
Height,
BW,
V_F,
V_L,
V_SI,
V_B,
V_A,
V_V,
V_RP,
V_SP,
V_Pu,
Q_C,
Q_Pu,
Q_F,
Q_L,
Q_SI,
Q_RP,
Q_SP,
P_V,
G_SYN_L,
G_SYN_SI,
k_L_GLOS,
k_SI_GLOS,
init_GSH_L,
init_GSH_SI,
k_GSH,
C_PRO_L,
C_PRO_SI,
Ka,
k_L_OH,
Km_L_CA,
Km_L_AO,
Km_L_GST,
Km_L_GST_G,
Vsmax_L_CA,
Vsmax_L_AO,
Vsmax_L_GST,
Km_SI_CA,
Km_SI_AO,
Km_SI_OH,
Vsmax_SI_CA,
Vsmax_SI_AO,
Vsmax_SI_OH,
Oral_Dose,
Inhalation_Dose,
Volume_exposure_chamber)
#defining the begin situation of the model Inhalation variation
inits <- c("A_GI" =0,
"A_P_Art" =0,
"A_Inhalation" =0,
"A_Exhalation" =0,
"A_Pu" =0,
"A_OH_Pu" =0,
"A_V" =0,
"A_OH_V" =0,
"A_F" =0,
"A_OH_F" =0,
"AM_L_CA" =0,
"AM_L_AO" =0,
"AM_L_AG_GST" =0,
"AM_L_AG_CHEM" =0,
"AM_L_AP" =0,
"A_OH_M_L_C_A" =0,
"A_OH_L" =0,
"A_L" =0,
"AM_Lc_GSH" =0,
"AM_SI_CA" =0,
"AM_SI_AO" =0,
"AM_SI_AG_CHEM"=0,
"AM_SI_AP" =0,
"A_OH_M_SI_C_A"=0,
"A_OH_SI" =0,
"A_SI" =0,
"AM_SIc_GSH" =0,
"A_RP" =0,
"A_OH_RP" =0,
"A_SP" =0,
"A_OH_SP" =0
);
#exposure
ex <- eventTable(amount.units = amount.units, time.units = time.units) %>%
et(id=1:nrow(phys),seq(from = time.0, to = time.end, by = time.frame))%>%
et(id=1:nrow(phys),amt=(Oral_Dose_in_mg_bw) * phys$BW/ MW * 1e+3 , dur=0.01, cmt="A_GI", nbr.doses=nbr.doses)%>%
#et(id=1:nrow(phys),amt=(Inhalation_Dose_in_mg_bw) * phys$BW/ MW * 1e+3 , dur=0.1, cmt="A_inhalation_Dose")%>%
et(id=1:nrow(phys),amt=phys$init_GSH_SI, dur=0.001, cmt="AM_SIc_GSH", nbr.doses=1)%>%
et(id=1:nrow(phys),amt=(iv_dose_in_mg_bw) * phys$BW/ MW * 1e+3, dur=0.005,cmt="A_V",nbr.doses=nbr.doses)%>%
et(id=1:nrow(phys),amt=phys$init_GSH_L, dur=0.001, cmt="AM_Lc_GSH", nbr.doses=1)
ex$add.dosing(dose=(Inhalation_Dose_in_mg_bw) * phys$BW/ MW * 1e+3, nbr.doses=12, dosing.interval=0.5, cmt="A_inhalation_Dose",dur=0.05, start.time=0.1)