-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathhomography.m
88 lines (79 loc) · 2.98 KB
/
homography.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
function H = homography(pts1, pts2, isnormal)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Estimate homography matrix H using direct linear transform (4-point
% method)
%
% Inputs - pts1: points from Frame 1
% pts2: points from Frame 2
% isnormal: apply normalisation (default 1)
%
% Output - H: Homography matrix
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if nargin < 3
isnormal = 1;
end
A= [];
if isnormal == 0
X1 = pts1(:,1); Y1 = pts1(:,2);
X2 = pts2(:,1); Y2 = pts2(:,2);
% create a matrix
for i = 1:size(pts1,1)
tmp = [X1(i), Y1(i), 1, 0, 0, 0, -X2(i)*X1(i), -X2(i)*Y1(i), -X2(i); ...
0, 0, 0, X1(i), Y1(i), 1, -Y2(i)*X1(i), -Y2(i)*Y1(i), -Y2(i);];
A = [A;tmp];
end
%{
X1(2), Y1(2), 1, 0, 0, 0, -X2(2)*X1(2), -X2(2)*Y1(2), -X2(2); ...
0, 0, 0, X1(2), Y1(2), 1, -Y2(2)*X1(2), -Y2(2)*Y1(2), -Y2(2); ...
X1(3), Y1(3), 1, 0, 0, 0, -X2(3)*X1(3), -X2(3)*Y1(3), -X2(3); ...
0, 0, 0, X1(3), Y1(3), 1, -Y2(3)*X1(3), -Y2(3)*Y1(3), -Y2(3); ...
X1(4), Y1(4), 1, 0, 0, 0, -X2(4)*X1(4), -X2(4)*Y1(4), -X2(4); ...
0, 0, 0, X1(4), Y1(4), 1, -Y2(4)*X1(4), -Y2(4)*Y1(4), -Y2(4)];
%}
[s,v,d] = svd(A);
Hp = d(:,9); % smallest eigenvector is the solution
H = reshape(Hp,3,3)'/Hp(9); % normalised w.r.t. the last component i.e. H(3,3) = 1;
else
% get mean
cx = 0; cy = 0;
cX = 0; cY = 0;
for i = 1:4
cx = cx + pts1(i,1);
cy = cy + pts1(i,2);
cX = cX + pts2(i,1);
cY = cY + pts2(i,2);
end
cx = cx/4; cy = cy/4;
cX = cX/4; cY = cy/4;
% scale
sx = 0; sy = 0;
sX = 0; sY = 0;
for j = 1:4
sx = sx + abs(pts1(j,1) - cx);
sy = sy + abs(pts1(j,2) - cy);
sX = sX + abs(pts2(j,1) - cX);
sY = sY + abs(pts2(j,2) - cY);
end
sx = 4/sx; sy = 4/sy;
sX = 4/sX; sY = 4/sY;
% H norm
InvHnorm = [1./sX, 0, cX; 0, 1./sY, cY;0, 0, 1];
Hnorm = [sx, 0, -cx*sx; 0, sy, -cy*sy; 0, 0, 1];
% contruct matrix
X1 = (pts1(:,1) - cx)*sx; Y1 = (pts1(:,2) - cy)*sy;
X2 = (pts2(:,1) - cX)*sX; Y2 = (pts2(:,2) - cY)*sY;
A = [X1(1), Y1(1), 1, 0, 0, 0, -X2(1)*X1(1), -X2(1)*Y1(1), -X2(1); ...
0, 0, 0, X1(1), Y1(1), 1, -Y2(1)*X1(1), -Y2(1)*Y1(1), -Y2(1); ...
X1(2), Y1(2), 1, 0, 0, 0, -X2(2)*X1(2), -X2(2)*Y1(2), -X2(2); ...
0, 0, 0, X1(2), Y1(2), 1, -Y2(2)*X1(2), -Y2(2)*Y1(2), -Y2(2); ...
X1(3), Y1(3), 1, 0, 0, 0, -X2(3)*X1(3), -X2(3)*Y1(3), -X2(3); ...
0, 0, 0, X1(3), Y1(3), 1, -Y2(3)*X1(3), -Y2(3)*Y1(3), -Y2(3); ...
X1(4), Y1(4), 1, 0, 0, 0, -X2(4)*X1(4), -X2(4)*Y1(4), -X2(4); ...
0, 0, 0, X1(4), Y1(4), 1, -Y2(4)*X1(4), -Y2(4)*Y1(4), -Y2(4)];
[s,v,d] = svd(A);
Hp = d(:,9);
tmp = reshape(Hp,3,3)';
Htmp = InvHnorm*tmp*Hnorm;
H = Htmp/Htmp(3,3);
end