-
Notifications
You must be signed in to change notification settings - Fork 493
/
Copy pathKDTreeVectorOfVectorsAdaptor.h
134 lines (118 loc) · 5.62 KB
/
KDTreeVectorOfVectorsAdaptor.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2011-16 Jose Luis Blanco (joseluisblancoc@gmail.com).
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#pragma once
#include <nanoflann.hpp>
#include <vector>
// ===== This example shows how to use nanoflann with these types of containers:
// using my_vector_of_vectors_t = std::vector<std::vector<double> > ;
//
// The next one requires #include <Eigen/Dense>
// using my_vector_of_vectors_t = std::vector<Eigen::VectorXd> ;
// =============================================================================
/** A simple vector-of-vectors adaptor for nanoflann, without duplicating the
* storage. The i'th vector represents a point in the state space.
*
* \tparam DIM If set to >0, it specifies a compile-time fixed dimensionality
* for the points in the data set, allowing more compiler optimizations.
* \tparam num_t The type of the point coordinates (typ. double or float).
* \tparam Distance The distance metric to use: nanoflann::metric_L1,
* nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc.
* \tparam IndexType The type for indices in the KD-tree index
* (typically, size_t of int)
*/
template <
class VectorOfVectorsType, typename num_t = double, int DIM = -1,
class Distance = nanoflann::metric_L2, typename IndexType = size_t>
struct KDTreeVectorOfVectorsAdaptor
{
using self_t = KDTreeVectorOfVectorsAdaptor<
VectorOfVectorsType, num_t, DIM, Distance, IndexType>;
using metric_t =
typename Distance::template traits<num_t, self_t>::distance_t;
using index_t =
nanoflann::KDTreeSingleIndexAdaptor<metric_t, self_t, DIM, IndexType>;
/** The kd-tree index for the user to call its methods as usual with any
* other FLANN index */
index_t* index = nullptr;
/// Constructor: takes a const ref to the vector of vectors object with the
/// data points
KDTreeVectorOfVectorsAdaptor(
const size_t /* dimensionality */, const VectorOfVectorsType& mat,
const int leaf_max_size = 10, const unsigned int n_thread_build = 1)
: m_data(mat)
{
assert(mat.size() != 0 && mat[0].size() != 0);
const size_t dims = mat[0].size();
if (DIM > 0 && static_cast<int>(dims) != DIM)
throw std::runtime_error(
"Data set dimensionality does not match the 'DIM' template "
"argument");
index = new index_t(
static_cast<int>(dims), *this /* adaptor */,
nanoflann::KDTreeSingleIndexAdaptorParams(
leaf_max_size, nanoflann::KDTreeSingleIndexAdaptorFlags::None,
n_thread_build));
}
~KDTreeVectorOfVectorsAdaptor() { delete index; }
const VectorOfVectorsType& m_data;
/** Query for the \a num_closest closest points to a given point
* (entered as query_point[0:dim-1]).
* Note that this is a short-cut method for index->findNeighbors().
* The user can also call index->... methods as desired.
*/
inline void query(
const num_t* query_point, const size_t num_closest,
IndexType* out_indices, num_t* out_distances_sq) const
{
nanoflann::KNNResultSet<num_t, IndexType> resultSet(num_closest);
resultSet.init(out_indices, out_distances_sq);
index->findNeighbors(resultSet, query_point);
}
/** @name Interface expected by KDTreeSingleIndexAdaptor
* @{ */
const self_t& derived() const { return *this; }
self_t& derived() { return *this; }
// Must return the number of data points
inline size_t kdtree_get_point_count() const { return m_data.size(); }
// Returns the dim'th component of the idx'th point in the class:
inline num_t kdtree_get_pt(const size_t idx, const size_t dim) const
{
return m_data[idx][dim];
}
// Optional bounding-box computation: return false to default to a standard
// bbox computation loop.
// Return true if the BBOX was already computed by the class and returned
// in "bb" so it can be avoided to redo it again. Look at bb.size() to
// find out the expected dimensionality (e.g. 2 or 3 for point clouds)
template <class BBOX>
bool kdtree_get_bbox(BBOX& /*bb*/) const
{
return false;
}
/** @} */
}; // end of KDTreeVectorOfVectorsAdaptor