forked from Xilinx/finn-hlslib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
upsample.hpp
143 lines (132 loc) · 5.11 KB
/
upsample.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
/******************************************************************************
* Copyright (c) 2019, Xilinx, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION). HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/******************************************************************************
*
* Authors: Giulio Gambardella <giuliog@xilinx.com>
* erling on 5/10/21.
*
*
* Library of templated HLS functions for QNN deployment.
* Targeting upsampling layers
*
******************************************************************************/
#ifndef UPSAMPLE_HPP
#define UPSAMPLE_HPP
/**
* \brief Upsampling with the Nearest Neighbour algorithm. Works with square feature maps
*
* \tparam OFMDim Size of the output feature map
* \tparam IFMDim Size of the input feature map
* \tparam NumChannels Amount of channels of the input feature map
* \tparam In_t Input datatype
*
* \param in Input stream
* \param out Output stream
*/
template<unsigned int OFMDim,
unsigned int IFMDim,
unsigned int NumChannels,
typename In_t>
void UpsampleNearestNeighbour(
hls::stream<ap_uint<NumChannels * In_t::width>> & in,
hls::stream<ap_uint<NumChannels * In_t::width>> & out
) {
static_assert(OFMDim > IFMDim, "");
constexpr unsigned int scale_factor = OFMDim/IFMDim;
constexpr unsigned int Padding = OFMDim % IFMDim;
// Padding might be asymmetrical
constexpr unsigned int PaddingDown = Padding/2;
constexpr unsigned int PaddingUp = Padding - PaddingDown;
// Padding might be asymmetrical
constexpr unsigned int PaddingRight = Padding/2;
constexpr unsigned int PaddingLeft = Padding - PaddingRight;
ap_uint<NumChannels * In_t::width> outData, inData;
ap_uint<NumChannels * In_t::width> RowBuf[IFMDim];
int count_row = -PaddingUp; // Counter used to understand whether reading (and buffering) a row or not - Made in order to avoid modulo operations
for (unsigned int y = 0; y < OFMDim; y++) {
for (unsigned int x = 0; x < OFMDim; x++) {
#pragma HLS pipeline style=flp II=1
bool read_row = (y ==0) || count_row==scale_factor;
if ((x < IFMDim) && read_row)
{
inData = in.read();
RowBuf[x] = inData;
}
// Padding Cols
if(x < PaddingLeft){
outData = RowBuf[0];
}
else if (x >= (OFMDim - PaddingRight)){
outData = RowBuf[IFMDim-1];
}
// Padding Rows
else if(y < PaddingUp || y >= (OFMDim - PaddingDown)){
outData = RowBuf[(x-PaddingLeft)/scale_factor];
}
// No Padding
else{
outData = RowBuf[(x-PaddingLeft)/scale_factor];
}
//std::cout << outData << " " ;
out.write(outData);
}// end for y
//std::cout << std::endl;
count_row++;
if (count_row > scale_factor)
count_row =1;
} // end for x
}
/**
* \brief Upsampling with the Nearest Neighbour algorithm. Works with square feature maps on multiple images
*
* \tparam OFMDim Size of the output feature map
* \tparam IFMDim Size of the input feature map
* \tparam NumChannels Amount of channels of the input feature map
* \tparam In_t Input datatype
*
* \param in Input stream
* \param out Output stream
* \param numReps Number of time the function has to be repeatedly executed (e.g. number of images)
*/
template<unsigned int OFMDim,
unsigned int IFMDim,
unsigned int NumChannels,
typename In_t>
void UpsampleNearestNeighbour_Batch(
hls::stream<ap_uint<NumChannels * In_t::width>> & in,
hls::stream<ap_uint<NumChannels * In_t::width>> & out,
unsigned int numReps) {
for (unsigned int rep = 0; rep < numReps; rep++) {
UpsampleNearestNeighbour<OFMDim, IFMDim, NumChannels, In_t>(in, out);
}
}
#endif