-
Notifications
You must be signed in to change notification settings - Fork 0
/
rep_tan.py
executable file
·215 lines (169 loc) · 6.78 KB
/
rep_tan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import rospy
from geometry_msgs.msg import Twist
from geometry_msgs.msg import PoseStamped
from to_goal import angle_to_goal, go_to_goal
import numpy as np
import matplotlib.pyplot as plt
import time
from tf.transformations import euler_from_quaternion
import os
from gazebo_msgs.srv import DeleteModel
fname = input("filename: ")
os.mkdir('outputs/'+fname)
timefile = open(f'outputs/{fname}/time.csv','w')
timefile.write('name,time,priority,efficiency\n')
node = rospy.init_node("avoid_cllision")
rate = rospy.Rate(1000)
bigrate = rospy.Rate(1)
detection_distance = 100
safe_distance = 3
maneuver_distance = 10
threshold=0.2
#k=2*10**1
k=1
class Uav:
def __init__(self,name,v,priority,goal):
self.x = 0
self.y = 0
self.yaw = 0
self.v = v
self.priority=priority
self.name=name
self.pub = rospy.Publisher(str('/'+name+'/cmd_vel'), Twist, queue_size=10)
self.sub = rospy.Subscriber(str('/'+name+'/ground_truth_to_tf/pose'), PoseStamped, self.poseCallback)
self.msg = Twist()
self.goal = goal
self.file = open('outputs/'+fname+'/'+name+'.csv','w')
self.time = 0
self.check=True
self.vreal = np.array([0,0])
self.ideal = 0
def poseCallback(self, data):
self.x = data.pose.position.x
self.y = data.pose.position.y
self.yaw = euler_from_quaternion([data.pose.orientation.x,data.pose.orientation.y,data.pose.orientation.z,data.pose.orientation.w])[2]
def go_to_goal(self, goal): #return velocity vector for goal
dist = np.linalg.norm((goal[0] - self.x, goal[1]-self.y))
if dist<1:
return np.array([0,0])
else:
f_v = self.v*np.array([self.goal[0]-self.x, self.goal[1]-self.y])
return f_v
def avoid_collision(self, drones):
vec = self.vreal
vec = np.array([0,0])
for drone in drones:
if drone.name != self.name:
if np.linalg.norm((drone.x-self.x,drone.y-self.y))<detection_distance:
if self.zem(drone) < safe_distance and self.t_go(drone)>=0:
#angle = np.arctan2(drone.y-self.y,drone.x-self.x)
dist = np.linalg.norm((drone.x-self.x,drone.y-self.y))
f_v = (k/(dist-safe_distance)**3)*(1/(dist-(self.priority/drone.priority)*safe_distance) - 1/detection_distance)*np.array([drone.x-self.x, drone.y-self.y])
theta = np.pi/2
rot = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]])
f_v_ = np.dot(rot, f_v)
#f_v_ = np.array([0,0])
del_v = f_v + f_v_
#print(self.name,"del_V", del_v ,"v_real", self.vreal)
#del_v = (f_v + f_v_)
vec = vec + self.v*del_v
vec = (self.v/np.linalg.norm(vec))*(vec)
print("upper",self.name, self.priority, vec)
return vec
def t_go(self,drone):
v1 = self.vreal*np.array([np.cos(self.yaw),np.sin(self.yaw)])
v2 = drone.vreal*np.array([np.cos(drone.yaw),np.sin(drone.yaw)])
p1 = np.array([self.x,self.y])
p2 = np.array([drone.x,drone.y])
t = -np.dot((v1-v2),(p1-p2))/np.dot((v1-v2),(v1-v2))
if t:
return t
else:
return -1
def zem(self, drone):
#print(self.name, self.yaw)
v1 = self.vreal
v2 = drone.vreal
p1 = np.array([self.x,self.y])
p2 = np.array([drone.x,drone.y])
t = -np.dot((v1-v2),(p1-p2))/np.dot((v1-v2),(v1-v2))
s = (p1-p2) + t*(v1-v2)
return np.linalg.norm(s)
def note_pos(self):
self.file.write(str(self.x)+","+str(self.y)+"\n")
def move(self, drones):
goal = self.goal
#add the results obtained from avoid_collision and go_to_goal and publish them
#also correct for yaw
if self.avoid_collision(drones)[0]<threshold and self.avoid_collision(drones)[1]<threshold:
vec = self.go_to_goal(goal)
else:
vec = -self.avoid_collision(drones)
angle = np.arctan2(vec[1],vec[0]) - self.yaw
norm = np.linalg.norm(vec)
self.msg.linear.x = min(norm, self.v)*np.cos(angle)
self.msg.linear.y = min(norm, self.v)*np.sin(angle)
self.vreal=np.array([self.msg.linear.x,self.msg.linear.y])
print(self.name,self.msg.linear.x,self.msg.linear.y)
self.pub.publish(self.msg)
#bigrate.sleep()
def check_end(self, drones):
if (np.linalg.norm(np.array([self.goal[1]-self.y,self.goal[0]-self.x]))<=2) and self.check==True:
#self.time = (rospy.Time.now()-self.time).secs
self.time = (rospy.Time.now()-self.time).to_sec()
print(self.time)
efficiency = self.ideal/self.time
timefile.write(str(self.name+','+str(self.time)+','+str(self.priority)+','+str(efficiency)+'\n'))
self.check=False
drones.remove(self)
delete_model_prox(self.name)
#spawn()
delete_model_prox = rospy.ServiceProxy('gazebo/delete_model', DeleteModel)
def take_off(drones):
msg = Twist()
msg.linear.z=1
#rate = rospy.Rate(10)
for i in range(300):
for drone in drones:
drone.pub.publish(msg)
rate.sleep()
#tell it to stop now
msg.linear.z=0
for drone in drones:
drone.pub.publish(msg)
#time.sleep(3)
def create_points():
radius = 100
n = int(input("how many drones you want? : "))
goals = []
step = 2*np.pi/n
for i in range(n):
theta = i*step
#goals.append((-radius*np.cos(theta),-radius*np.sin(theta)))
#noise = np.random.normal(loc=(0),scale=np.pi/6)
noise = 0
goals.append((radius*-np.cos(theta+noise), radius*-np.sin(theta+noise)))
return goals
#np.random.seed(42)
def create_drones(goals):
drones = []
for i in range(len(goals)):
#drones.append(Uav(f'uav{i+1}', 5, np.random.normal(loc=(3.5), scale=1.2), goals[i]))
drones.append(Uav(f'uav{i+1}', 1, 3, goals[i]))
#drones.append(Uav(f'uav{i+1}', 5, (i%5)+1, goals[i]))
rate.sleep()
return drones
if __name__ == '__main__':
goals = create_points()
drones = create_drones(goals)
take_off(drones)
for drone in drones:
drone.time = rospy.Time.now()
drone.ideal = np.linalg.norm([drone.goal[0]-drone.x, drone.goal[1]-drone.y])/drone.v
while True:
for drone in drones:
drone.move(drones)
#print(drone.name, drone.vreal)
drone.note_pos()
drone.check_end(drones)
rate.sleep()