forked from Arize-ai/openinference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathingestion_pipeline.py
41 lines (34 loc) · 1.65 KB
/
ingestion_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import tempfile
from urllib.request import urlretrieve
from llama_index.core import SimpleDirectoryReader
from llama_index.core.extractors import SummaryExtractor, TitleExtractor
from llama_index.core.ingestion import IngestionPipeline
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.schema import MetadataMode
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.openai import OpenAI
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
from openinference.instrumentation.llama_index import LlamaIndexInstrumentor
endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))
LlamaIndexInstrumentor().instrument(tracer_provider=tracer_provider)
with tempfile.NamedTemporaryFile() as tf:
urlretrieve(
"https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt",
tf.name,
)
documents = SimpleDirectoryReader(input_files=[tf.name]).load_data()
llm = OpenAI(model="gpt-3.5-turbo", temperature=0.1)
pipline = IngestionPipeline(
transformations=[
SentenceSplitter(chunk_size=1024, chunk_overlap=20),
TitleExtractor(llm=llm, metadata_mode=MetadataMode.EMBED, num_workers=8),
SummaryExtractor(llm=llm, metadata_mode=MetadataMode.EMBED, num_workers=8),
OpenAIEmbedding(),
]
)
if __name__ == "__main__":
nodes = pipline.run(documents=documents)