-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSI1.Rmd
1060 lines (954 loc) · 40.1 KB
/
SI1.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: 'Revisiting the concept of the “Neolithic Founder Crops” in southwest Asia'
subtitle: "Supplementary Information 1 – Quantitative Analysis"
author:
- "Joe Roe <<joe@joeroe.io>>"
- "Amaia Arranz-Otaegui"
date: "`r Sys.Date()`"
output:
bookdown::html_document2:
toc: true
toc_depth: 4
bibliography: references.bib
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(
echo = FALSE,
warning = FALSE,
message = FALSE
)
```
```{r deps}
library("SWAsiaNeolithicFounderCrops") # Run devtools::build() first
library("cowplot")
library("dplyr")
library("forcats")
library("ggplot2")
library("ggrepel")
library("ggspatial")
library("glue")
library("gt")
library("here")
library("khroma")
library("patchwork")
library("purrr")
library("readr")
library("sf")
library("stringr")
library("tidyr")
```
# Introduction
This document describes the quantitative analysis supporting our paper 'Revisiting the concept of the “Neolithic Founder Crops” in southwest Asia' in *Vegetation History and Archaeobotany*.
It is generated from the compendium of R code and data available at <https://doi.org/10.5281/zenodo.5911219> or as a git repository at <https://github.com/joeroe/SWAsiaNeolithicFounderCrops>.
# Methods & Materials
Please refer to accompanying publication for an introduction and justification for the data and quantitative approaches selected.
Here, we explain in more detail the steps necessary to reproduce the figures, tables, and other results presented in the main text, and present some supplementary results that were not included due to length constraints.
## Study region and period
```{r data-spatial, fig.cap='The study region', results='hide'}
proj <- 22770
unproj <- 4326
sw_asia <- st_read(here("analysis/data/raw_data/regions/swasia.geojson"))
land <- st_read(here("analysis/data/raw_data/ne/ne_50m_land.shp"))
rivers <- st_read(here("analysis/data/raw_data/ne/ne_50m_rivers_lake_centerlines_scale_rank.shp"))
lakes <- st_read(here("analysis/data/raw_data/ne/ne_50m_lakes.shp"))
highland <- st_read(here("analysis/data/raw_data/srtm/srtm30_sw_asia_1000m.geojson"))
highland <- filter(highland, above_1000m == 1)
base_map <- ggplot() +
shadow_spatial(st_bbox(sw_asia), fill = NA) +
annotation_spatial(land, fill = "white") +
annotation_spatial(highland, fill = "#f0f0f0", colour = NA) +
annotation_spatial(rivers, colour = "#555555", size = 0.5) +
annotation_spatial(lakes, fill = "lightblue") +
coord_sf(expand = FALSE, crs = proj)
base_map
```
We aimed to collate archaeobotanical data from Southwest Asia (fig. \@ref(fig:data-spatial)) from the Neolithic period, c. 11,700 – 6500 BP (table \@ref(tab:periods)).
To mitigate against an "edge effect", we also included samples in the source databases dated to the preceding Late Epipalaeolithic (c. 15,000–11,700 BP) and succeeding Chalcolithic (c. 6500–5000 BP).
```{r periods}
periods <- tribble(
~period, ~agriculture, ~start_bp, ~end_bp,
"Late Epipal.", "Foraging", 15000, 11700,
"PPNA", "Pre-domestication cultivation", 11700, 10700,
"EPPNB", "Cultivation of domesticated species", 10700, 10200,
"MPPNB", "Cultivation of domesticated species", 10200, 9500,
"LPPNB/C", "Agriculture", 9500, 8500,
"Pottery Neolithic", "Agriculture", 8500, 6500,
"Chalcolithic", "Agriculture", 6500, 5000,
)
neolithic <- c("PPNA", "EPPNB", "MPPNB", "LPPNB/C", "Pottery Neolithic")
neolithic_start <- max(filter(periods, period %in% neolithic) %>% select(start_bp))
neolithic_end <- min(filter(periods, period %in% neolithic) %>% select(end_bp))
periods %>%
gt(caption = "Cultural periods used in the analysis") %>%
cols_label(period = "Period", agriculture = "Subsistence",
start_bp = "Start (cal BP)", end_bp = "End (cal BP")
```
## Archaeobotanical data (Southwest Asia)
We collated data from three large-scale archaeobotanical databases: ORIGINS [@Wallace2018], and COMPAG [@Lucas2018, @Fuller2018; incorporating @Colledge2004, @Shennan2007], and ADEMNES [@Riehl2005].
To clean and make these datasets comparable, we:
* Standardised site names across databases (thesaurus available at <https://github.com/joeroe/swapdata>);
* Standardised taxonomic names across databases and applied various additional classifications described below;
* When sites were in multiple databases, preferred records from the most detailed/recent one (i.e. ORIGINS > COMPAG > ADEMNES);
* ORIGINS is recorded by sample, but COMPAG and ADEMNES by phase, so aggregated ORIGINS by phase for comparability – and because individual samples are more likely to be 'noisy';
* Calculated phase-level proportions for COMPAG, which only includes absolute frequencies;
* Excluded records from the source databases that:
* Were not taxonomically determined to at least the level of genus;
* Did not actually contain quantitative information (i.e. `n` is blank or missing);
* Described wood remains.
Finally we filtered this data to include only samples from our region (Southwest Asia) and period (11.7–6.5 ka cal BP) of interest,
with a buffer of ±2,000 years to reduce "edge effects" in our time series analyses.
```{r data-flora}
start_bp <- first(periods$start_bp)
end_bp <- last(periods$end_bp)
flora <- collate_flora(
origins_path = here("analysis/data/raw_data/origins/"),
ademnes_path = here("analysis/data/raw_data/ademnes"),
compag_path = here("analysis/data/raw_data/compag2018"),
taxa_path = here("analysis/data/raw_data/founder_crops.tsv"),
region = sw_asia,
start_bp = start_bp,
end_bp = end_bp
)
# Final cleaning
# Drop records that are insufficiently taxonomically determined (taxon = NA) or
# which don't actually have quantitative information, to make sure they don't
# throw off our ubiquity measures.
# We don't update prop, so they are still accounted for in abundance measures.
flora %>%
drop_na(taxon) %>%
drop_na(prop) %>%
filter(prop != 0) %>%
filter(!wood | is.na(wood)) %>%
select(-wood) ->
flora
# Summary totals
flora %>%
distinct(site_name) %>%
nrow() ->
n_site
flora %>%
distinct(site_name, phase_code) %>%
nrow() ->
n_assemb
```
The resulting collated dataset (`analysis/data/derived_data/swasia_neolithic_flora.tsv`) includes archaeobotanical assemblages representing `r n_assemb` distinct phases from `r n_site` sites.
## Archaeobotanical data (Europe)
```{r data-flora-europe}
flora_europe <- read_colledge2004(here("analysis/data/raw_data/colledge2004/"),
europe_only = TRUE)
n_assemb_europe <- length(unique(flora_europe$phase))
n_site_europe <- length(unique(flora_europe$site))
```
We also used Colledge et al.'s [-@Colledge2004] compilation of European data [see also @Shennan2007].
Since this data did not need to be formally incorporated into the rest of the analyses, we simply imported Colledge et al.'s dataset as is, excluding non-European countries.
It includes `r n_assemb_europe` assemblages from `r n_site_europe` Neolithic sites across Europe, but only presence data.
For completeness, Cyprus was included in both the European and Southwest Asian datasets.
We used this data to quantitatively assess early evidence for translocation of certain crops from Southwest Asia to Europe, reported in table 3 of the main text.
## Chronological data
All three databases include rough absolute date ranges (in the vast majority of cases summarised the available radiocarbon dates) for each sample.
Using this data, each phase was classified into one of the cultural periods defined above using its mid-point date (table \@ref(tab:sample-periods)).
```{r sample-periods}
flora <- mutate(
flora,
age_mid = age_end + ((age_start - age_end) / 2),
period = cut(-age_mid,
breaks = -c(periods$start_bp, 0),
labels = periods$period,
ordered_result = TRUE)
)
# MS Table 2
table2 <- flora %>%
distinct(period, site_name, phase) %>%
add_count(period, name ="n_phases") %>%
distinct(period, site_name, n_phases) %>%
add_count(period, name = "n_sites") %>%
distinct(period, n_phases, n_sites) %>%
select(period, n_sites, n_phases) %>%
arrange(period) %>%
left_join(periods, by = "period") %>%
transmute(
period,
ka_cal_bp = paste0(start_bp / 1000, "–", end_bp / 1000),
agriculture,
n_sites,
n_phases
) %>%
gt(caption = "Sites and assemblages per period") %>%
cols_label(
period = "Period",
ka_cal_bp = "ka cal BP",
agriculture = "Subsistence",
n_sites = "N sites",
n_phases = "N assemblages") %>%
tab_style(cell_text(weight = "bold"),
cells_body(columns = period, rows = period %in% neolithic))
table2
gtsave(table2, here("analysis/figures/table2.html"))
# Save key statistics for later
flora %>%
distinct(site_name, phase_code, period) %>%
filter(period %in% neolithic) %>%
nrow() ->
n_assemb_neolithic
flora %>%
filter(period %in% neolithic) %>%
distinct(site_name) %>%
nrow() ->
n_site_neolithic
```
For a finer-grained chronology, we also sliced the assemblages into century bins.
An assemblage was considered to belong to a bin (e.g. 5000–5099 BP) if any part of its absolute date range falls within that bin – this results in the duplication of data across bins, but better reflects the inherent imprecision of radiocarbon dating.
```{r sample-centuries}
centuries <- seq(from = first(periods$start_bp),
to = last(periods$end_bp),
by = -100)
names(centuries) <- centuries
flora %>%
mutate(century = map_dfc(centuries, ~. < age_start & . > age_end)) %>%
unpack(century) %>%
pivot_longer((ncol(flora)+1):ncol(.), names_to = "century",
names_transform = list(century = as.integer)) %>%
filter(value) %>%
select(-value) %>%
mutate(period = cut(-century,
breaks = -c(periods$start_bp, last(periods$end_bp)),
labels = periods$period,
ordered_result = TRUE)) ->
flora_ts
```
## Sample coverage
We are now in a position to inspect the geographical (fig. \@ref(fig:sample-map)) and temporal \@ref(fig:sample-chronology) coverage of the data.
Unsurprisingly, the distribution is uneven.
Notably, we have few Epipalaeolithic sites, but a very large number of Chalcolithic sites.
The regional coverage reflects broader trends in the research history of the region, with a large body of evidence from the Southern Levant, especially for earlier periods, and the rest of the region more patchily covered.
Nevertheless, we consider that we have a sufficient baseline number of samples for each time slice in our analysis—the lowest is 11 assemblages, for the EPPNB—especially for the key Neolithic periods.
```{r sample-summary}
flora %>%
group_by(site_name, phase_code) %>%
summarise(across(c(source, latitude, longitude, phase, age_start, age_end,
period), first),
.groups = "drop") ->
flora_phases
```
```{r sample-map, fig.cap='Geographical distribution of sampled archaeobotanical assemblages'}
named_sites <- c(
"Ahihud", # Not in flora data
"Asikli Höyük", # Not in flora data
"Cafer Höyük",
"Chogha Golan",
"Demirköy", # Not in flora data
"Dhra'", # Not in flora data
"Erbaba",
"Gilgal I",
"Gritille", # Not in flora data
"Gusir Höyük", # Not in flora data
"Hallan Çemi", # Not in flora data
"Hacilar",
"Höyücek",
"Iraq ed-Dubb",
"Jerf el Ahmar",
"Kosak Shamali",
"Körtik Tepe",
"M'lefaat",
"Nahal Oren",
"Netiv Hagdud",
"Nevali Çori", # Not in flora data
"Sabi Abyad II",
"Sheikh-e Abad",
"Tell Aswad",
"Tell Ain el-Kerkh",
"Tell es-Sultan",
"Tell Qarassa North", # Not in flora data
"Tell Qarassa", # Not in flora data
"Tell Qaramel", # Not in flora data
"Tell Ramad",
"Yiftah'el",
"Zahrat adh-Dhra 2",
"Çatalhöyük",
"Çayönü"
)
flora_phases |>
distinct(site_name, period, latitude, longitude) |>
mutate(site_name = recode(site_name, `Hacılar` = "Hacilar")) |> # for EPS compatibility
mutate(label = site_name %in% named_sites) ->
p1_data
p1 <- base_map +
geom_spatial_point(data = p1_data,
mapping = aes(longitude, latitude),
size = 0.5,
crs = unproj) +
labs(x = NULL, y = NULL)
p1_top <- p1 +
geom_spatial_text_repel(
data = p1_data |>
filter(label) |>
distinct(site_name, longitude, latitude),
mapping = aes(longitude, latitude, label = site_name),
size = 2,
min.segment.length = 0
) +
theme(text = element_text(size = 9))
p1_bottom <- p1 +
facet_wrap(vars(period), nrow = 1) +
theme(axis.text = element_blank(),
axis.ticks = element_blank(),
text = element_text(size = 9))
p1_top + inset_element(p1_bottom, 0, 0, 1, 0.25, align_to = "panel")
ggsave(here("analysis/figures/fig1.eps"), width = 174, height = 145,
units = "mm")
ggsave(here("analysis/figures/fig1.png"), width = 174, height = 145,
units = "mm", dpi = 300)
```
```{r sample-chronology, fig.cap='Distribution of sampled archaeobotanical assemblages by cultural period. Black lines indicate our period of interest (the Neolithic).'}
p2_top <- flora_phases %>%
count(period) %>%
left_join(periods) %>%
mutate(period = ordered(period, levels = periods$period)) %>%
ggplot(aes(xmin = start_bp, xmax = end_bp, ymin = 0, ymax = n,
fill = period)) +
geom_rect() +
geom_vline(xintercept = c(neolithic_start, neolithic_end)) +
scale_x_reverse(limits = c(15000, 5000),
breaks = seq(15000, 5000, -1000)) +
scale_y_continuous(limits = c(0, 150)) +
khroma::scale_fill_muted() +
labs(x = NULL, y = "Samples by period", fill = "Period") +
theme_minimal() +
theme(legend.position = "right",
axis.text.x = element_blank(), axis.ticks.x = element_blank())
p2_bottom <- flora_ts %>%
group_by(site_name, phase_code, century) %>%
summarise(period = first(period), .groups = "drop") %>%
ggplot(aes(century, fill = period)) +
geom_bar(width = 100, na.rm = TRUE) +
geom_vline(xintercept = c(neolithic_start, neolithic_end)) +
scale_x_reverse(limits = c(15000, 5000),
breaks = seq(15000, 5000, -1000)) +
scale_y_reverse(limits = c(150, 0)) +
khroma::scale_fill_muted(guide = guide_none()) +
labs(x = "cal BP", y = "Samples by century") +
theme_minimal() +
theme(legend.position = "bottom")
p2_top / p2_bottom
```
<!--
Table \@ref(tab:all-assemblages) lists all the assemblages included in our analysis.
-->
```{r all-assemblages}
# Breaks PDF generation :/
# flora_phases %>%
# select(
# site_name,
# phase,
# source,
# age_start,
# age_end,
# period
# ) %>%
# mutate(
# age_start = round(age_start / 1000, digits = 2),
# age_end = round(age_end / 1000, digits = 2)
# ) %>%
# group_by(site_name) %>%
# gt(caption = "Assemblages included in the analysis") %>%
# cols_label(
# phase = "Site/assemblage",
# source = "Source",
# age_start = "Reported age ka cal BP",
# period = "Assigned period"
# ) %>%
# cols_merge(c(age_start, age_end), pattern = "{1}–{2}") %>%
# cols_align("right", period) %>%
# fmt_missing(everything(), missing_text = "—") %>%
# tab_style(cell_text(weight = "bold"), cells_row_groups())
```
# Results
## Ubiquity of all taxa in the Neolithic
Table \@ref(tab:all-ubiquity) summarises the occurrence of each standardised taxon across Neolithic assemblages, broken down by plant category.
```{r all-ubiquity}
flora %>%
drop_na(category, taxon) %>%
filter(period %in% neolithic) %>%
group_by(category, taxon, founder_crop, phase_code) %>%
summarise(prop = sum(prop, na.rm = TRUE), .groups = "drop_last") %>%
summarise(
n_present = sum(prop > 0),
n_gthalf = sum(prop > 0.5),
n_gtqrtr = sum(prop > 0.25),
.groups = "drop"
) %>%
mutate(
pct_present = n_present / n_assemb_neolithic,
pct_gthalf = n_gthalf / n_assemb_neolithic,
pct_gtqrtr = n_gtqrtr / n_assemb_neolithic
) %>%
group_by(category) %>%
arrange(-n_present, .by_group = TRUE) %>%
gt(caption = "Ubiquity of all taxa across Neolithic assemblages. Founder crops are highlighted in bold.") %>%
cols_hide(c(founder_crop)) %>%
fmt_percent(c(pct_present, pct_gthalf, pct_gtqrtr)) %>%
cols_merge_n_pct(n_present, pct_present) %>%
cols_merge_n_pct(n_gthalf, pct_gthalf) %>%
cols_merge_n_pct(n_gtqrtr, pct_gtqrtr) %>%
cols_label(taxon = "Taxa",
n_present = "N (%) recorded present",
n_gthalf = "N (%) making up more than half of assemblage",
n_gtqrtr = "N (%) making up more than a quarter of assemblage") %>%
tab_style(cell_text(weight = "bold"), cells_body(rows = !is.na(founder_crop))) %>%
cols_width(taxon ~ pct(40))
```
This summary data underlies figure 5 in the main text.
```{r all-ubiquity-plot, fig.height=12, include=FALSE}
flora %>%
drop_na(category, taxon) %>%
filter(period %in% neolithic) %>%
group_by(category, taxon, founder_crop, phase_code) %>%
summarise(prop = sum(prop, na.rm = TRUE), .groups = "drop_last") %>%
summarise(
n_present = sum(prop > 0),
n_gthalf = sum(prop > 0.5),
n_gtqrtr = sum(prop > 0.25),
.groups = "drop"
) %>%
mutate(
pct_present = n_present / n_assemb_neolithic,
pct_gthalf = n_gthalf / n_assemb_neolithic,
pct_gtqrtr = n_gtqrtr / n_assemb_neolithic
) %>%
group_by(category) %>%
slice_max(n_present, n = 15, with_ties = FALSE) %>%
mutate(
taxon = str_trunc(taxon, 64),
taxon = fct_reorder(taxon, n_present, .desc = FALSE)
) %>%
ggplot(aes(taxon, pct_present, fill = !is.na(founder_crop))) +
facet_wrap(vars(category), ncol = 2, scales = "free_y",
strip.position = "left") +
geom_col(colour = "black", width = 0.4) +
geom_text(aes(y = 0, label = taxon),
size = 7 / (14/5), hjust = 0, nudge_x = 0.5) +
coord_flip() +
scale_x_discrete(labels = NULL, expand = expansion(c(0.05, 0), c(0, 0.7))) +
scale_y_continuous(labels = scales::label_percent(), limits = c(0, 1),
expand = expansion(0.025, 0)) +
scale_fill_manual(values = c("white", "black"), guide = "none") +
labs(x = NULL, y = "Proportion of assemblages present") +
theme_half_open(font_size = 9) +
theme(axis.ticks.y = element_blank(),
axis.line.y = element_blank())
ggsave(here("analysis/figures/fig5.eps"), width = 174, height = 174,
units = "mm")
ggsave(here("analysis/figures/fig5.png"), width = 174, height = 174,
units = "mm", bg = "white")
```
## Founder crop ubiquity and abundance
### By period
Table \@ref(tab:founder-ubiquity) summarises the ubiquity of the founder crop species in assemblages broken down by period, i.e. for each period, it shows the number of assemblages where *N* distinct founder species are present, for varying values of *N*.
Given the inconsistent levels of identification between assemblages, emmer wheat and einkorn wheat are counted as one crop.
Hence, the maximum possible number of founder crops present is seven rather than eight.
```{r founder-ubiquity}
flora %>%
mutate(founder_crop = recode(founder_crop,
"emmer wheat" = "wheat",
"einkorn wheat" = "wheat",
.default = founder_crop)) %>%
group_by(period, site_name, phase_code) %>%
summarise(n_founder_crop = n_distinct(founder_crop, na.rm = TRUE),
.groups = "drop") %>%
group_by(period) %>%
summarise(
n_assemb = n(),
n_atleast7 = sum(n_founder_crop >= 7),
p_atleast7 = n_atleast7 / n_assemb,
n_atleast6 = sum(n_founder_crop >= 6),
p_atleast6 = n_atleast6 / n_assemb,
n_atleast5 = sum(n_founder_crop >= 5),
p_atleast5 = n_atleast5 / n_assemb,
n_atleast4 = sum(n_founder_crop >= 4),
p_atleast4 = n_atleast4 / n_assemb,
n_atleast3 = sum(n_founder_crop >= 3),
p_atleast3 = n_atleast3 / n_assemb,
n_atleast2 = sum(n_founder_crop >= 2),
p_atleast2 = n_atleast2 / n_assemb,
n_atleast1 = sum(n_founder_crop >= 1),
p_atleast1 = n_atleast1 / n_assemb
) %>%
gt(caption = "Ubiquity of the founder crops by period.") %>%
fmt_percent(starts_with("p_")) %>%
cols_merge_n_pct(n_atleast7, p_atleast7) %>%
cols_merge_n_pct(n_atleast6, p_atleast6) %>%
cols_merge_n_pct(n_atleast5, p_atleast5) %>%
cols_merge_n_pct(n_atleast4, p_atleast4) %>%
cols_merge_n_pct(n_atleast3, p_atleast3) %>%
cols_merge_n_pct(n_atleast2, p_atleast2) %>%
cols_merge_n_pct(n_atleast1, p_atleast1) %>%
tab_spanner("Number of assemblages with N founder crops present:",
columns = starts_with("n_atleast"), id = "n_atleast") %>%
cols_label(
period = "Period",
n_assemb = "Total assemblages",
n_atleast7 = "All",
n_atleast6 = ">= 6",
n_atleast5 = ">= 5",
n_atleast4 = ">= 4",
n_atleast3 = ">= 3",
n_atleast2 = ">= 2",
n_atleast1 = ">= 1"
)
```
### By century
For a more fine-grained look at the time series, we can use the century bins calculated above.
Figure \@ref(fig:ts-founder-crops) shows the importance of the individual founder crops measured by both cross-assemblage ubiquity and by relative abundance.
We measure ubiquity by calculated the proportion of assemblages dated to each century where one or more, two or more, etc., of the founder crops were reported present;
and abundance by the taking the mean proportion of the assemblage made up by each founder species for each century (hence NB., the y axis of the lower plot will not sum to 100%).
These different measures reveal different trends, as discussed in the main text.
```{r ts-founder-crops, fig.cap='Ubiquity and abundance of the founder crops by century', fig.height=6}
flora_ts %>%
# Aggregate wheat
mutate(founder_crop = recode(founder_crop,
"einkorn wheat" = "wheat",
"emmer wheat" = "wheat",
.default = founder_crop)) %>%
# Count number of assemblages with N founder crops per century
group_by(century) %>%
mutate(n_assemb = length(unique(phase_code))) %>%
drop_na(founder_crop) %>%
group_by(century, n_assemb, phase_code) %>%
summarise(n_founder_crop = length(unique(founder_crop)), .groups = "drop_last") %>%
summarise(
atleast1 = sum(n_founder_crop >= 1) / n_assemb,
atleast2 = sum(n_founder_crop >= 2) / n_assemb,
atleast3 = sum(n_founder_crop >= 3) / n_assemb,
atleast4 = sum(n_founder_crop >= 4) / n_assemb,
atleast5 = sum(n_founder_crop >= 5) / n_assemb,
atleast6 = sum(n_founder_crop >= 6) / n_assemb,
atleast7 = sum(n_founder_crop >= 7) / n_assemb,
) %>%
pivot_longer(
atleast1:atleast7,
names_to = "founder_crops",
values_to = "n"
) %>%
mutate(founder_crops = str_replace(founder_crops, "atleast", ">=")) %>%
# Plot
ggplot() +
geom_area(aes(century / 1000, n, fill = founder_crops), position = "identity") +
geom_vline(data = periods, aes(xintercept = start_bp / 1000),
linetype = "dashed") +
geom_label(data = periods,
aes(x = start_bp / 1000, y = Inf, label = period),
hjust = 0, vjust = 1, label.size = NA, fill = NA, size = 7 * 0.36) +
scale_x_reverse(breaks = scales::breaks_width(-1), limits = c(11.7, 6.5),
expand = expansion(0)) +
scale_y_continuous(labels = scales::label_percent(accuracy = 1),
expand = expansion(mult = c(0, 0.05))) +
khroma::scale_fill_YlOrBr(discrete = TRUE) +
labs(x = NULL, y = "Proportion of assemblages",
fill = "Founder crops\npresent") +
theme_half_open(font_size = 9) ->
p1
# By average proportion
flora_ts %>%
# Aggregate wheat and drop non-founder crops
mutate(founder_crop = recode(founder_crop,
"einkorn wheat" = "wheat",
"emmer wheat" = "wheat",
.default = founder_crop)) %>%
# Aggregate by founder crops
group_by(century, site_name, phase_code, founder_crop) %>%
summarise(prop = sum(prop, na.rm = TRUE), .groups = "drop") %>%
# Add number of assemblages per century
group_by(century) %>%
mutate(n_assemb = length(unique(phase_code))) %>%
# Calculate average proportion
group_by(century, founder_crop) %>%
summarise(avg_prop = sum(prop) / first(n_assemb)) %>%
# Refactor categories for plot
mutate(founder_crop = fct_reorder(founder_crop, avg_prop, .fun = sum, .desc = FALSE)) %>%
drop_na(founder_crop) %>%
# Plot
ggplot(aes(century / 1000, avg_prop, fill = founder_crop)) +
geom_area() +
geom_vline(data = periods, aes(xintercept = start_bp / 1000),
linetype = "dashed") +
geom_label(data = periods,
aes(x = start_bp / 1000, y = Inf, label = period),
hjust = 0, vjust = 1, label.size = NA, fill = NA, size = 7 * 0.36) +
scale_x_reverse(breaks = scales::breaks_width(-1), limits = c(11.7, 6.5),
expand = expansion(0)) +
scale_y_continuous(limits = c(0, 0.5), breaks = scales::breaks_width(0.1),
labels = scales::label_percent(accuracy = 1),
expand = expansion(mult = c(0, 0.05))) +
khroma::scale_fill_muted() +
labs(x = "ka cal BP", y = "Mean proportion of assemblages", fill = NULL) +
theme_half_open(font_size = 9) ->
p2
p1 / p2
ggsave(here("analysis/figures/fig4.eps"), width = 174, height = 117,
units = "mm")
ggsave(here("analysis/figures/fig4.png"), width = 174, height = 117,
units = "mm")
```
## Abundance of plant categories
To move beyond the concept of "founder crops" vs. "wild plants", we classified each taxonomic record in our dataset on a number of other axes:
* Broad plant category, i.e. grasses, legumes, "wild plants", or fruits/nuts
* Its edibility
* For grasses and legumes, whether it is large/medium- or small-seeded
```{r category-summary}
flora %>%
filter(period %in% neolithic) %>%
mutate(category = replace_na(category, "Unclassified")) %>%
group_by(site_name, phase_code, category) %>%
summarise(
n = sum(n, na.rm = TRUE),
prop = sum(prop, na.rm = TRUE),
.groups = "drop"
) %>%
group_by(category) %>%
summarise(
prop_avg = mean(prop),
n_present = n(),
n_gthalf = sum(prop > 0.5),
n_gtqrtr = sum(prop > 0.25),
pct_present = n_present / n_assemb_neolithic,
pct_gthalf = n_gthalf / n_assemb_neolithic,
pct_gtqrtr = n_gtqrtr / n_assemb_neolithic,
.groups = "drop"
) %>%
arrange(desc(prop_avg)) %>%
gt(caption = "Abundance and ubiquity of broad plant categories across Neolithic assemblages.") %>%
cols_label(
category = "Category",
prop_avg = "Average proportion",
n_present = "Present",
n_gthalf = "More than ½",
n_gtqrtr = "More than ¼"
) %>%
cols_merge_n_pct(n_present, pct_present) %>%
cols_merge_n_pct(n_gthalf, pct_gthalf) %>%
cols_merge_n_pct(n_gtqrtr, pct_gtqrtr) %>%
fmt_percent(starts_with("pct")) %>%
fmt_percent(prop_avg) %>%
cols_align("left", category)
```
```{r category-summary-byperiod}
flora %>%
mutate(category = replace_na(category, "Unclassified")) %>%
group_by(period, site_name, phase_code, category) %>%
summarise(
n = sum(n, na.rm = TRUE),
prop = sum(prop, na.rm = TRUE),
.groups = "drop"
) %>%
group_by(period) %>%
mutate(n_assemb = length(unique(phase_code))) %>%
group_by(period, category) %>%
summarise(
prop_avg = mean(prop),
n_present = n(),
n_gthalf = sum(prop > 0.5),
n_gtqrtr = sum(prop > 0.25),
pct_present = n_present / first(n_assemb),
pct_gthalf = n_gthalf / first(n_assemb),
pct_gtqrtr = n_gtqrtr / first(n_assemb),
.groups = "drop_last"
) %>%
arrange(desc(prop_avg), .by_group = TRUE) %>%
gt(caption = "Abundance and ubiquity of broad plant categories, by period.") %>%
cols_label(
category = "Category",
prop_avg = "Average proportion",
n_present = "Present",
n_gthalf = "More than ½",
n_gtqrtr = "More than ¼"
) %>%
cols_merge_n_pct(n_present, pct_present) %>%
cols_merge_n_pct(n_gthalf, pct_gthalf) %>%
cols_merge_n_pct(n_gtqrtr, pct_gtqrtr) %>%
fmt_percent(starts_with("pct")) %>%
fmt_percent(prop_avg) %>%
cols_align("left", category)
```
Table \@ref(tab:category-summary) summarises the abundance of the broad plant categories across Neolithic assemblages, \@ref(tab:category-summary-byperiod) the same data broken down by period, and figure \@ref(fig:category-ts) how this changed through time.
```{r category-ts, fig.cap='Abundance of broad plant categories through time'}
flora_ts %>%
# Aggregate by category
group_by(century, site_name, phase_code, category) %>%
summarise(prop = sum(prop, na.rm = TRUE), .groups = "drop") %>%
# Add total number of assemblages per century
group_by(century) %>%
mutate(n_assemb = length(unique(phase_code))) %>%
# Calculate average proportion
group_by(century, category) %>%
summarise(avg_prop = sum(prop) / first(n_assemb)) %>%
# Refactor categories for plot
mutate(
category = fct_reorder(category, avg_prop, .fun = sum, .desc = FALSE),
category = fct_explicit_na(category, "Unclassified")
) %>%
# Plot
ggplot(aes(century / 1000, avg_prop, fill = category)) +
geom_area() +
geom_vline(data = periods, aes(xintercept = start_bp / 1000)) +
geom_label(data = periods,
aes(x = start_bp / 1000, y = Inf, label = period),
hjust = 0, vjust = 1, label.size = NA, fill = NA, size = 9 * 0.36) +
scale_x_reverse(breaks = scales::breaks_width(-1), limits = c(11.7, 6.5),
expand = expansion()) +
scale_y_continuous(breaks = scales::breaks_pretty(5),
labels = scales::percent,
limits = c(0, 1),
expand = expansion()) +
khroma::scale_fill_muted() +
labs(x = "ka cal BP", y = "mean proportion of assemblage", fill = NULL) +
theme_half_open(font_size = 9) +
theme(legend.position = "bottom")
ggsave(here("analysis/figures/fig2.eps"), width = 174, height = 87,
units = "mm")
ggsave(here("analysis/figures/fig2.png"), width = 174, height = 87,
units = "mm", dpi = 600, bg = "#ffffff")
```
In the following sections, we will analyse trends within these categories in more detail.
### Grasses
```{r common-grasses}
flora %>%
filter(category == "Grasses", period %in% neolithic) %>%
group_by(taxon) %>%
summarise(n_present = n()) %>%
arrange(desc(n_present)) %>%
slice(1:8) %>%
pull(taxon) ->
top_grasses
```
The eight most ubiquitous grass taxonomic groups, measured by presence across Neolithic assemblages, are: `r paste(top_grasses, collapse = ", ")`.
Figure \@ref(fig:grasses-ts) shows how the abundance of these taxa changed through time.
```{r grasses-ts, fig.cap='Abundance of grass taxa through time'}
p_ts_grasses <- flora_ts %>%
# Include only top 8 grasses
filter(category == "Grasses") %>%
mutate(taxon = if_else(taxon %in% top_grasses, taxon, NA_character_)) %>%
# Count total number of assemblages per century
group_by(century) %>%
mutate(n_assemb = length(unique(phase_code))) %>%
# Calculate average proportion per century
group_by(century, taxon) %>%
summarise(avg_prop = sum(prop) / first(n_assemb), .groups = "drop_last") %>%
# Make gaps explicit
full_join(expand.grid(century = unique(.$century), taxon = unique(.$taxon)),
by = c("taxon", "century")) %>%
mutate(avg_prop = replace_na(avg_prop, 0)) %>%
# Refactor & order categories for plotting
mutate(
taxon = factor(taxon, levels = rev(top_grasses)),
taxon = fct_explicit_na(taxon, "Other"),
taxon = fct_relabel(taxon, str_wrap, width = 40)
) %>%
# Plot
ggplot(aes(century / 1000, avg_prop, fill = taxon)) +
geom_area(na.rm = TRUE) +
geom_vline(data = periods, aes(xintercept = start_bp / 1000),
linetype = "dashed") +
geom_label(data = periods,
aes(x = start_bp / 1000, y = Inf, label = period),
hjust = 0, vjust = 1, label.size = NA, fill = NA, size = 7 * 0.36) +
scale_x_reverse(breaks = scales::breaks_width(-1), limits = c(11.7, 6.5),
expand = expansion()) +
scale_y_continuous(breaks = scales::breaks_width(0.1),
labels = scales::label_percent(accuracy = 1),
expand = expansion(mult = c(0, 0.05))) +
khroma::scale_fill_muted(guide = guide_legend(ncol = 1)) +
labs(x = "ka cal BP", y = NULL, fill = "Grasses") +
theme_half_open(font_size = 9) +
theme(legend.position = "right", legend.title = element_text(face = "bold"))
p_ts_grasses
```
### Pulses
```{r common-pulses}
flora %>%
filter(category == "Pulses", period %in% neolithic) %>%
group_by(taxon) %>%
summarise(n_present = n()) %>%
arrange(desc(n_present)) %>%
slice(1:8) %>%
pull(taxon) ->
top_pulses
```
The eight most ubiquitous pulse taxonomic groups, measured by presence across Neolithic assemblages, are: `r paste(top_pulses, collapse = ", ")`.
Figure \@ref(fig:pulses-ts) shows how the abundance of these taxa changed through time.
```{r pulses-ts, fig.cap='Abundance of pulse taxa through time'}
p_ts_pulses <- flora_ts %>%
# Include only top 8 grasses
filter(category == "Pulses") %>%
mutate(taxon = if_else(taxon %in% top_pulses, taxon, NA_character_)) %>%
# Count total number of assemblages per century
group_by(century) %>%
mutate(n_assemb = length(unique(phase_code))) %>%
# Calculate average proportion per century
group_by(century, taxon) %>%
summarise(avg_prop = sum(prop) / first(n_assemb), .groups = "drop_last") %>%
# Make gaps explicit
full_join(expand.grid(century = unique(.$century), taxon = unique(.$taxon)),
by = c("taxon", "century")) %>%
mutate(avg_prop = replace_na(avg_prop, 0)) %>%
# Refactor & order categories for plotting
mutate(
taxon = factor(taxon, levels = rev(top_pulses)),
taxon = fct_explicit_na(taxon, "Other"),
taxon = fct_relabel(taxon, str_wrap, width = 40)
) %>%
# Plot
ggplot(aes(century / 1000, avg_prop, fill = taxon)) +
geom_area() +
geom_vline(data = periods, aes(xintercept = start_bp / 1000),
linetype = "dashed") +
geom_label(data = periods,
aes(x = start_bp / 1000, y = Inf, label = period),
hjust = 0, vjust = 1, label.size = NA, fill = NA, size = 7 * 0.36) +
scale_x_reverse(breaks = scales::breaks_width(-1), limits = c(11.7, 6.5),
expand = expansion()) +
scale_y_continuous(breaks = scales::breaks_width(0.1),
labels = scales::percent,
expand = expansion(mult = c(0, 0.05))) +
khroma::scale_fill_muted(guide = guide_legend(ncol = 1)) +
labs(x = "ka cal BP", y = NULL, fill = "Pulses") +
theme_half_open(font_size = 9) +
theme(legend.position = "right", legend.title = element_text(face = "bold"))
p_ts_pulses
```
### Wild plants
```{r common-wild-plants}
flora %>%
filter(category == "Wild plants", period %in% neolithic) %>%
group_by(taxon) %>%
summarise(n_present = n()) %>%
arrange(desc(n_present)) %>%
slice(1:8) %>%
pull(taxon) ->
top_wild_plants
```
The eight most ubiquitous 'wild plant' taxonomic groups, measured by presence across Neolithic assemblages, are: `r paste(top_wild_plants, collapse = ", ")`.
Figure \@ref(fig:wild-plants-ts) shows how the abundance of these taxa changed through time.
```{r wild-plants-ts, fig.cap='Abundance of wild plant taxa through time'}
p_ts_wild_plants <- flora_ts %>%
# Include only top 8 grasses
filter(category == "Wild plants") %>%
mutate(taxon = if_else(taxon %in% top_wild_plants, taxon, NA_character_)) %>%
# Count total number of assemblages per century
group_by(century) %>%
mutate(n_assemb = length(unique(phase_code))) %>%
# Calculate average proportion per century
group_by(century, taxon) %>%
summarise(avg_prop = sum(prop) / first(n_assemb), .groups = "drop_last") %>%
# Make gaps explicit
full_join(expand.grid(century = unique(.$century), taxon = unique(.$taxon)),
by = c("taxon", "century")) %>%
mutate(avg_prop = replace_na(avg_prop, 0)) %>%
# Refactor & order categories for plotting
mutate(
taxon = factor(taxon, levels = rev(top_wild_plants)),
taxon = fct_explicit_na(taxon, "Other"),
taxon = fct_relabel(taxon, str_wrap, width = 40)
) %>%
# Plot
ggplot(aes(century / 1000, avg_prop, fill = taxon)) +
geom_area() +
geom_vline(data = periods, aes(xintercept = start_bp / 1000),
linetype = "dashed") +
geom_label(data = periods,
aes(x = start_bp / 1000, y = Inf, label = period),
hjust = 0, vjust = 1, label.size = NA, fill = NA, size = 7 * 0.36) +
scale_x_reverse(breaks = scales::breaks_width(-1), limits = c(11.7, 6.5),
expand = expansion()) +
scale_y_continuous(breaks = scales::breaks_width(0.1),
labels = scales::percent,
expand = expansion(mult = c(0, 0.05))) +
khroma::scale_fill_muted(guide = guide_legend(ncol = 1)) +
labs(x = "ka cal BP", y = NULL, fill = "Wild plants") +
theme_half_open(font_size = 9) +
theme(legend.position = "right", legend.title = element_text(face = "bold"))
p_ts_wild_plants
```
### Fruits and nuts
```{r common-fruits-nuts}
flora %>%
filter(category == "Fruits/nuts", period %in% neolithic) %>%
group_by(taxon) %>%
summarise(n_present = n()) %>%
arrange(desc(n_present)) %>%
slice(1:8) %>%
pull(taxon) ->
top_fruits_nuts
```
The eight most ubiquitous fruit/nut taxonomic groups, measured by presence across Neolithic assemblages, are: `r paste(top_fruits_nuts, collapse = ", ")`.
Figure \@ref(fig:fruits-nuts-ts) shows how the abundance of these taxa changed through time.
```{r fruits-nuts-ts, fig.cap='Abundance of fruit/nut taxa through time'}
p_ts_fruits_nuts <- flora_ts %>%
# Include only top 8 grasses
filter(category == "Fruits/nuts") %>%
mutate(taxon = if_else(taxon %in% top_fruits_nuts, taxon, NA_character_)) %>%
# Count total number of assemblages per century
group_by(century) %>%
mutate(n_assemb = length(unique(phase_code))) %>%
# Calculate average proportion per century
group_by(century, taxon) %>%
summarise(avg_prop = sum(prop) / first(n_assemb), .groups = "drop_last") %>%
# Make gaps explicit
full_join(expand.grid(century = unique(.$century), taxon = unique(.$taxon)),
by = c("taxon", "century")) %>%
mutate(avg_prop = replace_na(avg_prop, 0)) %>%
# Refactor & order categories for plotting
mutate(
taxon = factor(taxon, levels = rev(top_fruits_nuts)),