-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
executable file
·135 lines (103 loc) · 3.57 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import argparse
import os
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import chatbridge.tasks as tasks
from chatbridge.common.config import Config
from chatbridge.common.dist_utils import get_rank, init_distributed_mode
from chatbridge.common.logger import setup_logger
from chatbridge.common.optims import (
LinearWarmupCosineLRScheduler,
LinearWarmupStepLRScheduler,
)
from chatbridge.common.registry import registry
from chatbridge.common.utils import now
# imports modules for registration
from chatbridge.datasets.builders import *
from chatbridge.models import *
from chatbridge.processors import *
from chatbridge.runners import *
from chatbridge.tasks import *
import wandb
import torch.distributed as dist
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def parse_args():
parser = argparse.ArgumentParser(description="Training")
parser.add_argument("--cfg-path", required=True, help="path to configuration file.")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
args = parser.parse_args()
# if 'LOCAL_RANK' not in os.environ:
# os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def setup_seeds(config):
seed = config.run_cfg.seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
def get_runner_class(cfg):
"""
Get runner class from config. Default to epoch-based runner.
"""
runner_cls = registry.get_runner_class(cfg.run_cfg.get("runner", "runner_base"))
return runner_cls
def main():
# allow auto-dl completes on main process without timeout when using NCCL backend.
# os.environ["NCCL_BLOCKING_WAIT"] = "1"
# set before init_distributed_mode() to ensure the same job_id shared across all ranks.
job_id = now()
cfg = Config(parse_args())
init_distributed_mode(cfg.run_cfg)
setup_seeds(cfg)
# set after init_distributed_mode() to only log on master.
setup_logger()
cfg.pretty_print()
if is_main_process():
wandb_key = getattr(cfg.run_cfg, 'wandb_key', None)
if wandb_key:
os.environ['WANDB_API_KEY'] = wandb_key
wandb.init(project=cfg.run_cfg.output_dir.split('/')[-2],
name=cfg.run_cfg.output_dir.split('/')[-1],
entity='zjzhao',
config=cfg,
resume=cfg.run_cfg.output_dir.split('/')[-1])
task = tasks.setup_task(cfg)
# datasets = task.build_datasets(cfg)
dataloader = task.build_dataloader(cfg)
model = task.build_model(cfg)
runner = get_runner_class(cfg)(
cfg=cfg, job_id=job_id, task=task, model=model, datasets=None, dataloader=dataloader
)
runner.train()
if __name__ == "__main__":
main()