Zhibin Wang, Yanxin Cai, Jiayi Zhou, Yangming Zhang, Tianyu Li, Wei Li, Xun Liu, Guoqing Wang, and Yang Yang
Figure 1: Satellite-side optical encoding for compression and ground-based deep unfolding decoding for reconstruction.
Figure 2: (a) BMNet processes the measurement
Dataset | Train | Val |
---|---|---|
DOTA-v1.0 | Baidu | Baidu |
LandSat-8 | - | Baidu |
To test the pre-trained BMNet at a compression ratio of 16:
python eval.py --image_size 512 512 --cs_ratio 4 4 --data_path ./samples --model_path ./model_best.pth --num_shows 1 --results_path ./results/
To train BMNet with 4 GPUs at a compression ratio of 16:
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --master_port 4566 --nproc_per_node=4 train.py --batch_size 4 --learning_rate 5e-6 --image_size 512 512 --num_stage 10 --cs_ratio 4 4 --warmup_steps 5 --opt-level O1 --end_epoch 100 --data_path /data2/wangzhibin/DOTA/trainsplit512_nogap/images/ --save_dir ./model_ckpt/
To test BMNet at a compression ratio of 16:
python eval.py --image_size 512 512 --cs_ratio 4 4 --data_path /data2/wangzhibin/DOTA/valsplit512_nogap/images/ --model_path ./model_ckpt/2024_12_11_22_07_45/model_best.pth --num_shows 10 --results_path ./results/
If you find the code helpful in your resarch or work, please consider citing:
@misc{wang2024ultralowcomplexityonorbitcompression,
title={Ultra-Low Complexity On-Orbit Compression for Remote Sensing Imagery via Block Modulated Imaging},
author={Zhibin Wang and Yanxin Cai and Jiayi Zhou and Yangming Zhang and Tianyu Li and Wei Li and Xun Liu and Guoqing Wang and Yang Yang},
year={2024},
eprint={2412.18417},
archivePrefix={arXiv},
primaryClass={eess.IV},
url={https://arxiv.org/abs/2412.18417},
}
Many thanks to the contributions of these excellent works: