Skip to content

Johnathan218/BMNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Ultra-Low Complexity On-Orbit Compression for Remote Sensing Imagery via Block Modulated Imaging

Zhibin Wang, Yanxin Cai, Jiayi Zhou, Yangming Zhang, Tianyu Li, Wei Li, Xun Liu, Guoqing Wang, and Yang Yang

paper

Encoding Framework

encode

Figure 1: Satellite-side optical encoding for compression and ground-based deep unfolding decoding for reconstruction.

Decoding Framework

decode

Figure 2: (a) BMNet processes the measurement $Y$ alongside the mask $M$, and reconstructs the original signal $X$. $\textbf{\emph{v}}^{(k)}$ denotes the auxiliary variable at the $k$-th stage (see Eq. 5). (b) The proposed gated 3D convolution block. (c) The proposed Two-Way Cross-Attention module. $\textbf{\emph{u}}^{(k)}$ denotes the latent variable generated by the encoder of the $k$-th 3D U-net. $\textbf{\emph{h}}_{h}^{(k)}$ denotes the hidden variable of the $k$-th stage ($\textbf{\emph{h}}^{(0)}=\textbf{\emph{u}}^{(0)}$).

Datasets

Dataset Train Val
DOTA-v1.0 Baidu Baidu
LandSat-8 - Baidu

Training and Evaluation

Demo

To test the pre-trained BMNet at a compression ratio of 16:

python eval.py --image_size 512 512 --cs_ratio 4 4 --data_path ./samples --model_path ./model_best.pth --num_shows 1 --results_path ./results/

Training

To train BMNet with 4 GPUs at a compression ratio of 16:

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --master_port 4566 --nproc_per_node=4 train.py --batch_size 4 --learning_rate 5e-6 --image_size 512 512 --num_stage 10 --cs_ratio 4 4 --warmup_steps 5 --opt-level O1 --end_epoch 100 --data_path /data2/wangzhibin/DOTA/trainsplit512_nogap/images/ --save_dir ./model_ckpt/

Evaluation

To test BMNet at a compression ratio of 16:

python eval.py --image_size 512 512 --cs_ratio 4 4 --data_path /data2/wangzhibin/DOTA/valsplit512_nogap/images/ --model_path ./model_ckpt/2024_12_11_22_07_45/model_best.pth --num_shows 10 --results_path ./results/

Citation

If you find the code helpful in your resarch or work, please consider citing:

    @misc{wang2024ultralowcomplexityonorbitcompression,
          title={Ultra-Low Complexity On-Orbit Compression for Remote Sensing Imagery via Block Modulated Imaging}, 
          author={Zhibin Wang and Yanxin Cai and Jiayi Zhou and Yangming Zhang and Tianyu Li and Wei Li and Xun Liu and Guoqing Wang and Yang Yang},
          year={2024},
          eprint={2412.18417},
          archivePrefix={arXiv},
          primaryClass={eess.IV},
          url={https://arxiv.org/abs/2412.18417}, 
    }

Acknowledgement

Many thanks to the contributions of these excellent works:

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages