-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhilbert_functions.hpp
204 lines (184 loc) · 6.85 KB
/
hilbert_functions.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#ifndef __HILBERT_FUNCTIONS_
#define __HILBERT_FUNCTIONS_
#include <set>
#include <list>
#include <cstring>
#include <iostream>
using std::set; using std::list;
#include "system_constants.hpp"
#include "fields.hpp"
#include "monomial.hpp"
#include "polynomial_linked_list.hpp"
#include "dense_univariate_integer_poly.hpp"
#include "dense_univariate_rational_poly.hpp"
/**
@defgroup commalg Commutative Algebra
@brief Classes useful for computational Commutative Algebra
*/
/**
@defgroup utils Utilities
@brief Useful functions and classes that don't fit in easily elsewhere
*/
/**
@ingroup utils
@author John Perry
@date 2016
@brief divides out the common term of the two given numbers
@details Useful for simplifying terms of Dense_Univariate_Rational_Polynomial.
Uses the (simple) Euclidean Algorithm to determine the gcd.
*/
void divide_by_common_term(COEF_TYPE &, UCOEF_TYPE &);
/**
@ingroup commalg
@brief test for the 0-base case @cite Bigatti97
@return @c true if and only if the zero base case applies
*/
bool is_zero_base_case(const list<Monomial> &);
/**
@ingroup commalg
@brief computes Hilbert numerator when the 0-base case applies @cite Bigatti97
@param T list of generators of monomial ideal
@param grading use for a graded polynomial ring
@return the Hilbert polynomial for the 0-base case
@details If you do not want to use a grading, set it to @c nullptr.
*/
Dense_Univariate_Integer_Polynomial * solve_zero_base_case(
const list<Monomial> & T, const WT_TYPE * grading
);
/**
@ingroup commalg
@brief test for the 1-base case @cite Bigatti97
@details If result is <c>T.end()</c>, this is not a 1-base case.
@return index to an element of @p T that makes the 0-base case.
*/
list<Monomial>::const_iterator is_one_base_case(const list<Monomial> &);
/**
@ingroup commalg
@brief applies Bigatti’s algorithm for the 1-base case
@param T list of generators of monomial ideal
@param ti index of the one term in @c T which is \e not a simple power
@param grading use for a graded polynomial ring
@return Hilbert numerator for a 1-base case
@details If you do not want to use a grading, set it to @c nullptr.
*/
Dense_Univariate_Integer_Polynomial * solve_one_base_case(
const list<Monomial> & T, list<Monomial>::const_iterator ti,
const WT_TYPE * grading
);
/**
@ingroup commalg
@brief test for the “splitting case” @cite Bigatti97
@param T list of generators of monomial ideal
@param U empty list of iterators on T; will be modified
@param V empty list of iterators on T; will be modified
@return @c true if and only if @p T can be split into two lists
of relatively prime monomials
@details If the result is @c true, the monomials indexed by iterators in @p U
should be relatively prime to the monomials indexed by iterators in @c V.
@warning If the result is @c false, disregard the entries of @c U and @c V.
*/
bool is_splitting_case(
const list<Monomial> & T,
list< list<Monomial>::const_iterator > & U,
list< list<Monomial>::const_iterator > & V
);
/**
@ingroup commalg
@brief applies Bigatti’s algorithm for the 1-base case
@param T list of generators of monomial ideal
@param U list of iterators indexing elements of @p T
@param V list of iterators indexing elements of @p U
@param grading use for a graded polynomial ring
@return the Hilbert numerator for the splitting case @cite Bigatti97
@details If you do not want to use a grading, set it to @c nullptr.
@warning The entries of @p U @p V need to be relatively prime
to the entries of @p V; otherwise the result is wrong.
*/
Dense_Univariate_Integer_Polynomial * solve_splitting_case(
const list<Monomial> & T,
const list< list<Monomial>::const_iterator > & U,
const list< list<Monomial>::const_iterator > & V,
const WT_TYPE * grading
);
/**
@ingroup commalg
@brief chooses a pivot for the Bigatti algorithm
@param T list of generators of monomial ideal
@return a monomial used to pivot in the Bigatti algorithm @cite Bigatti97
@details This uses the strategy described by @cite RouneHilbert2010
and due to @cite Bigatti97 : select @f$x_i^e@f$ such that @f$i@f$ maximizes the number
of terms divisible by that variable, and @f$e@f$ is the median of the powers
of @f$x_i@f$ appearing in @f$T@f$.
*/
Monomial choose_hilbert_pivot(const list<Monomial> & T);
/**
@ingroup commalg
@brief the Bigatti algorithm to compute the Hilbert numerator @cite Bigatti97
@param T list of generators of a monomial ideal
@param grading use for a graded polynomial ring
@return the basic, unreduced Hilbert numerator of the ideal generated by
@f$ T @f$ .
@details This computes the first Hilbert numerator.
If you do not want to use a grading, set it to @c nullptr.
@warning @c T needs to be non-redundant; i.e., @f$\forall t,u\in T@f$
@f$t\not\mid u@f$.
*/
Dense_Univariate_Integer_Polynomial * hilbert_numerator_bigatti(
const list<Monomial> & T, const WT_TYPE * grading = nullptr
);
/**
@ingroup commalg
@brief computes the second Hilbert numerator (after reduction by
@f$(1-t)^{\deg I}@f$)
@param n number of variables (used to bound computation)
@param hn the first Hilbert numerator (before reduction)
@param grading the grading of the ideal (if @c NULLPTR , the standard grading)
@return the reduced Hilbert numerator of the specified Hilbert numerator
*/
Dense_Univariate_Integer_Polynomial * hilbert_second_numerator(
NVAR_TYPE n,
Dense_Univariate_Integer_Polynomial * hn,
const WT_TYPE * grading = nullptr
);
/**
@ingroup commalg
@brief computes the dimension of the ideal
by subtracting the Hilbert numerators
@param nvars number of variables in ring
@param first_numerator the unreduced Hilbert numerator
@param second_numerator the reduced Hilbert numerator
@return dimension of the ideal whose Hilbert numerators are given
*/
unsigned ideal_dimension(
NVAR_TYPE nvars,
const Dense_Univariate_Integer_Polynomial *first_numerator,
const Dense_Univariate_Integer_Polynomial *second_numerator
);
/**
@ingroup commalg
@brief computes the number of combinations @f$C(t+a,b)@f$
@param a an integer
@param b an integer
@return the polynomial @f$C(t+a,b)@f$
*/
Dense_Univariate_Rational_Polynomial * polynomial_binomial(
long long a, long long b
);
/**
@ingroup commalg
@brief computes the Hilbert polynomial for an ideal
@param n number of variables in ideal
@param dim dimension of ideal (if known)
@param T ideal’s generators
@param hn Hilbert numerator (if known)
@param hn2 reduced Hilbert numerator (if known)
@return the Hilbert polynomial of the ideal generated by @p T
*/
Dense_Univariate_Rational_Polynomial * hilbert_polynomial(
NVAR_TYPE n,
unsigned int dim,
const list<Monomial> T,
Dense_Univariate_Integer_Polynomial * hn = nullptr,
Dense_Univariate_Integer_Polynomial * hn2 = nullptr
);
#endif