-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathifft.py
130 lines (107 loc) · 4.22 KB
/
ifft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Joie Angelo Llantero - 201789868 (IFFT)
# Jansen Wong - 2018-07475 (FFT)
import math
import cmath
# we pass the complex numbers to this function to remove the trailing zeroes, e.g.,
# ['-4.000000+0.000000j'] would become [(-4+0j)].
def reformat_fft_output(data):
output = []
for item in data:
temp = ''
sign = item[0]
output_val = []
for char in item:
if (char.isdigit() or char == '.'):
temp += char
else:
if (temp != ''):
output_val.append(sign + temp)
temp = ''
if (char == '+'):
sign = '+'
elif (char == '-'):
sign = '-'
temp = ''
output.append(complex((float)(output_val[0]), (float)(output_val[1])))
return output
def get_ifft(data):
# when the length of the array data is 2, we compute for the real values of the signal data
if len(data) == 2:
input1 = (data[0] + data[1]) / 2
input2 = data[0] - input1
return [round(input1.real), round(input2.real)]
# when the length of the array data is 1, we get the real value of the single element inside
elif len(data) == 1:
data[0] = round(data[0].real)
return data
else:
# we divide the array data into quarters and save that into a list
inputs = [data[i:i + int(len(data)/4)] for i in range(0, len(data), (int(len(data)/4)))]
# we segregate the list of quarters by storing it in different variables for later use
X0 = inputs[0]
X1 = inputs[1]
X2 = inputs[2]
X3 = inputs[3]
sum_odd = []
diff_odd = []
fft_e1 = []
fft_e2 = []
# by using the quarters we stored earlier, i.e., X0, X1, X2, X3,
# we find the list of the sum and difference of the odd-indexed signal slices
for i in range(int(len(X0))):
e_val = (X0[i] + X2[i]) / 2
fft_e1.append(e_val)
sum_odd.append(X0[i] - e_val)
e_val2 = (X1[i] + X3[i]) / 2
fft_e2.append(e_val2)
diff_odd.append((X3[i] - e_val2)/1j)
# we combine the e values saved earlier in the loop to obtain fft_e values
fft_e = fft_e1 + fft_e2
# we now compute for the twiddling factors
twiddle_factors = []
for k in range(len(data)):
twiddle_factors += [cmath.exp(-2j*math.pi*k/len(data))]
fft_a = []
fft_b = []
# by using the sum and difference list of the odd-indices from the earlier loop,
# we now compute for the a values and the b values to obtain fft_a and fft_b
for i in range(len(sum_odd)):
a_val = (sum_odd[i] + diff_odd[i]) / (2*twiddle_factors[i])
b_val = (sum_odd[i] - (a_val*twiddle_factors[i]))/twiddle_factors[3*i]
fft_a.append(a_val)
fft_b.append(b_val)
# we return the fft lists to the function to further process until a base case is reached
e = get_ifft(fft_e)
a = get_ifft(fft_a)
b = get_ifft(fft_b)
# we now find the original signal
orig_signal = []
e_count = 0
a_count = 0
b_count = 0
for i in range(len(data)):
if i % 2 == 0:
orig_signal.append(round(e[e_count].real))
e_count += 1
elif i % 4 == 1:
orig_signal.append(round(a[a_count].real))
a_count += 1
elif i % 4 == 3:
orig_signal.append(round(b[b_count].real))
b_count += 1
return orig_signal
if __name__ == '__main__':
# we first obtain the first input which determined the total number of signals
T = input()
inputs = []
outputs = []
print(T)
# we now get each of the signal and pass it to the reformater and then obtain the ifft
for i in range(int(T)):
inputs.append(input())
inputs[i] = inputs[i].split()
outputs.append(get_ifft(reformat_fft_output(inputs[i][2:])))
output_string = str(inputs[i][0]) + " "
for j in range(int(inputs[i][0])):
output_string = output_string + str(outputs[i][j]) + " "
print(output_string)