-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_hyperparameter_sweep.py
543 lines (461 loc) · 17.5 KB
/
run_hyperparameter_sweep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
"""
Hyperparameter tuning using Optuna
References:
- https://github.com/optuna/optuna-examples/blob/main/pytorch/pytorch_simple.py
- https://github.com/nttcslab/byol-a/blob/master/evaluate.py
"""
import argparse
import logging
import sys
import os
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from tqdm import tqdm
import numpy as np
import time
import datetime
import csv
import math
import logging
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
import optuna
from optuna.integration.wandb import WeightsAndBiasesCallback
from optuna.trial import TrialState
import wandb
from utils.torch_mlp_clf import TorchMLPClassifier
from utils.loss import BarlowTwinsLoss
from utils import transforms, utils, hyperparameters
import datasets
from model import BarlowTwinsHead, ModelWrapper
HYPERPARAMETERS = [
'lr', 'wd',
'projector_n_hidden_layers',
'projector_out_dim',
'mixup_ratio',
'virtual_crop_scale',
'mask_beta',
]
CLASSES = dict(
fsd50k=200,
nsynth=88,
)
def objective(trial):
# Generate the model
model = define_model(trial).cuda()
# prepare loss
barlow_twins_loss = BarlowTwinsLoss(
args,
ncrops=args.local_crops_number+2, # total number of crops = 2 global crops + local_crops_number
).cuda()
# Generate the optimizers
if args.optimizer in ['Adam', 'AdamW', 'SGD']:
if 'lr' in args.tune:
args.lr = trial.suggest_float("lr", 1e-6, 1e-2, log=True)
if 'wd' in args.tune:
args.wd = trial.suggest_float("wd", 1e-3, 1e0, log=True)
if args.optimizer == 'Adam':
optimizer = optim.Adam(utils.get_param_groups(model), lr=args.lr, weight_decay=args.wd)
elif args.optimizer == 'AdamW':
optimizer = optim.AdamW(utils.get_param_groups(model), lr=args.lr, weight_decay=args.wd)
elif args.optimizer == 'SGD':
optimizer = optim.SGD(utils.get_param_groups(model), lr=args.lr, weight_decay=args.wd)
elif args.optimizer == 'LARS':
# separate lr for weights and biases using LARS optimizer
if 'lr' in args.tune:
lr_weights = trial.suggest_float("lr_weights", 1e-3, 1e0, log=True)
lr_biases = trial.suggest_float("lr_biases", 1e-6, 1e-2, log=True)
else:
lr_weights = args.lr_weights
lr_biases = args.lr_biases
if 'wd' in args.tune:
args.wd = trial.suggest_float("wd", 1e-8, 1e-4, log=True)
param_weights = []
param_biases = []
for param in model.parameters():
if param.ndim == 1:
param_biases.append(param)
else:
param_weights.append(param)
parameters = [
{'params': param_weights, 'lr': lr_weights},
{'params': param_biases, 'lr': lr_biases},
]
optimizer = utils.LARS(parameters, lr=0, weight_decay=args.wd,
weight_decay_filter=True, lars_adaptation_filter=True)
# Random masking ratio
if 'mask_beta' in args.tune:
assert args.mask
assert args.mask_ratio_schedule
args.mask_beta = trial.suggest_float("mask_beta", 0.05, 0.5)
# Get data
train_loader, eval_train_loader, eval_val_loader, eval_test_loader = get_data(trial)
mask_ratio_schedule = None
if args.mask_ratio_schedule:
mask_ratio_schedule = utils.sine_scheduler_increase(
final_value=args.mask_beta,
epochs=args.train_epochs,
niter_per_ep=len(train_loader),
warmup_epochs=int(args.train_epochs / 5),
warmup_value=0,
)
# mixed precision
fp16_scaler = None
if args.use_fp16:
fp16_scaler = torch.cuda.amp.GradScaler()
# Train the model
print('Running training...')
for epoch in range(1, args.train_epochs+1):
model.train()
loss = train_one_epoch(
epoch,
model,
barlow_twins_loss,
train_loader,
optimizer,
fp16_scaler,
mask_ratio_schedule,
)
# Report intermediate objective value
score = evaluate(model.backbone.encoder, eval_train_loader, eval_val_loader, eval_test_loader)
trial.report(score, epoch)
# Handle pruning based on the intermediate value.
if trial.should_prune():
raise optuna.TrialPruned()
return score
def define_model(trial):
if 'projector_n_hidden_layers' in args.tune:
args.projector_n_hidden_layers = trial.suggest_categorical("projector_n_hidden_layers", [1, 2, 3])
if 'projector_out_dim' in args.tune:
args.projector_out_dim = trial.suggest_categorical("projector_out_dim", [64, 128, 256, 1024, 4096, 8192, 16384])
model = ModelWrapper(args)
model = utils.MultiCropWrapper(
backbone=model,
head=BarlowTwinsHead(
args,
in_dim=model.feature_dim,
),
)
return model
def evaluate(model, train_loader, val_loader, test_loader):
if args.eval == 'linear':
return eval_linear(model, train_loader, val_loader, test_loader, args.use_fp16_eval)
elif args.eval == 'knn':
return eval_knn(model, train_loader, test_loader)
@torch.no_grad()
def eval_knn(model, memory_data_loader, test_data_loader, k=200, temperature=0.5):
"""
kNN accuracy - Copy-paste from https://github.com/yaohungt/Barlow-Twins-HSIC/blob/main/main.py
"""
model.eval()
c = CLASSES[args.dataset]
total_top1, total_top5, total_num, feature_bank, target_bank = 0.0, 0.0, 0, [], []
# generate feature bank and target bank
for data_tuple in tqdm(memory_data_loader, desc='Feature extracting'):
data, target = data_tuple
target_bank.append(target)
feature = model(data.cuda(non_blocking=True))
feature_bank.append(feature)
# [D, N]
feature_bank = torch.cat(feature_bank, dim=0).t().contiguous()
# [N]
feature_labels = torch.cat(target_bank, dim=0).contiguous().to(feature_bank.device)
# loop test data to predict the label by weighted knn search
test_bar = tqdm(test_data_loader)
for data_tuple in test_bar:
data, target = data_tuple
data, target = data.cuda(non_blocking=True), target.cuda(non_blocking=True)
feature = model(data)
total_num += data.size(0)
# compute cos similarity between each feature vector and feature bank ---> [B, N]
sim_matrix = torch.mm(feature, feature_bank)
# [B, K]
sim_weight, sim_indices = sim_matrix.topk(k=k, dim=-1)
# [B, K]
sim_labels = torch.gather(feature_labels.expand(data.size(0), -1), dim=-1, index=sim_indices)
sim_weight = (sim_weight / temperature).exp()
# counts for each class
one_hot_label = torch.zeros(data.size(0) * k, c, device=sim_labels.device)
# [B*K, C]
one_hot_label = one_hot_label.scatter(dim=-1, index=sim_labels.view(-1, 1), value=1.0)
# weighted score ---> [B, C]
pred_scores = torch.sum(one_hot_label.view(data.size(0), -1, c) * sim_weight.unsqueeze(dim=-1), dim=1)
pred_labels = pred_scores.argsort(dim=-1, descending=True)
total_top1 += torch.sum((pred_labels[:, :1] == target.unsqueeze(dim=-1)).any(dim=-1).float()).item()
total_top5 += torch.sum((pred_labels[:, :5] == target.unsqueeze(dim=-1)).any(dim=-1).float()).item()
test_bar.set_description('Acc@1:{:.2f}% Acc@5:{:.2f}%'
.format(total_top1 / total_num * 100, total_top5 / total_num * 100))
return total_top1 / total_num
@torch.no_grad()
def get_embeddings(model, data_loader, fp16_scaler):
model.eval()
embs, targets = [], []
for data, target in data_loader:
with torch.cuda.amp.autocast(enabled=(fp16_scaler is not None)):
if 'vit' in args.model_type:
emb = utils.encode_vit(
model.encoder,
data.cuda(non_blocking=True),
split_frames=True,
use_cls=args.use_cls,
)
else:
emb = model(data.cuda(non_blocking=True))
if isinstance(emb, list):
emb = emb[-1]
emb = emb.detach().cpu().numpy()
embs.extend(emb)
targets.extend(target.numpy())
return np.array(embs), np.array(targets)
def eval_linear(model, train_loader, val_loader, test_loader, use_fp16):
# mixed precision
fp16_scaler = None
if use_fp16:
fp16_scaler = torch.cuda.amp.GradScaler()
print('Extracting embeddings')
start = time.time()
X_train, y_train = get_embeddings(model, train_loader, fp16_scaler)
X_val, y_val = get_embeddings(model, val_loader, fp16_scaler)
X_test, y_test = get_embeddings(model, test_loader, fp16_scaler)
print(f'Done\tTime elapsed = {time.time() - start:.2f}s')
print('Fitting linear classifier')
start = time.time()
clf = TorchMLPClassifier(
hidden_layer_sizes=(),
max_iter=100,
early_stopping=True,
n_iter_no_change=10,
debug=False,
)
clf.fit(X_train, y_train, X_val=X_val, y_val=y_val)
score = clf.score(X_test, y_test)
print(f'Done\tTime elapsed = {time.time() - start:.2f}s')
return score
def train_one_epoch(epoch, model, barlow_twins_loss, data_loader, optimizer,
fp16_scaler, mask_ratio_schedule):
model.train()
total_loss, total_num, train_bar = 0, 0, tqdm(data_loader)
total_data_time, total_forward_time, total_backward_time = 0, 0, 0
tflag = time.time()
for iteration, (images, _) in enumerate(train_bar):
data_time = time.time() - tflag
iteration += (epoch - 1) * len(data_loader) # global training iteration
# move images to gpu
images = [im.cuda(non_blocking=True) for im in images]
# mask ratio
if args.mask:
if mask_ratio_schedule is not None:
mask_ratio = mask_ratio_schedule[iteration]
else:
mask_ratio = args.mask_ratio
else:
mask_ratio = 0
tflag = time.time()
# forward passes + compute barlow twins loss
with torch.cuda.amp.autocast(enabled=(fp16_scaler is not None)):
teacher_output = model(
images[:1], # only the 1 global crop passed through the teacher
mask_ratio=mask_ratio,
ncrops=1,
)
# masked recon
if args.masked_recon:
teacher_output, recon_loss = teacher_output
student_output = model(
images[1:], # 1 global crop + all local crops passed through the student
ncrops=args.local_crops_number+1,
)
bt_loss = barlow_twins_loss(
student_output,
teacher_output,
ngcrops_each=1,
)
forward_time = time.time() - tflag
tflag = time.time()
loss = bt_loss
if args.masked_recon:
loss += recon_loss
if not math.isfinite(loss.item()):
print(f'Loss is {loss.item()}. Stopping training')
sys.exit(1)
optimizer.zero_grad()
if fp16_scaler is None:
loss.backward()
optimizer.step()
else:
fp16_scaler.scale(loss).backward()
fp16_scaler.step(optimizer)
fp16_scaler.update()
backward_time = time.time() - tflag
total_num += args.batch_size
total_loss += loss.item() * args.batch_size
total_data_time += data_time
total_forward_time += forward_time
total_backward_time += backward_time
train_bar.set_description('Train Epoch: [{}/{}] Loss: {:.4f} Data time {:.2f}({:.2f}) Forward time {:.2f}({:.2f}) Backward time {:.2f}({:.2f}))'.format(
epoch, args.train_epochs, total_loss / total_num,
data_time, total_data_time,
forward_time, total_forward_time,
backward_time, total_backward_time))
tflag = time.time()
return total_loss / total_num
def get_data(trial):
if args.dataset == 'fsd50k':
return get_fsd50k(trial)
elif args.dataset == 'nsynth':
return get_nsynth_50h(trial)
def get_nsynth_50h(trial):
if 'mixup_ratio' in args.tune:
args.mixup_ratio = trial.suggest_categorical("mixup_ratio", [0, 0.2, 0.4, 0.6, 0.8])
if 'virtual_crop_scale' in args.tune:
args.virtual_crop_scale = args.virtual_crop_scale = (
trial.suggest_categorical("virtual_crop_scale_F", [1, 1.2, 1.4, 1.6, 1.8]),
trial.suggest_categorical("virtual_crop_scale_T", [1, 1.2, 1.4, 1.6, 1.8]),
)
norm_stats = [-8.82, 7.03]
train_loader = DataLoader(
datasets.NSynth_HEAR(args, split='train',
transform=transforms.AudioPairTransform(
args,
train_transform=True,
mixup_ratio=args.mixup_ratio,
),
norm_stats=norm_stats),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True, drop_last=True,
)
eval_train_loader = DataLoader(
datasets.NSynth_HEAR(args, split='train', transform=None, norm_stats=norm_stats),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True, drop_last=False,
)
eval_val_loader = DataLoader(
datasets.NSynth_HEAR(args, split='valid', transform=None, norm_stats=norm_stats),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True, drop_last=False,
)
eval_test_loader = DataLoader(
datasets.NSynth_HEAR(args, split='test', transform=None, norm_stats=norm_stats),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True, drop_last=False,
)
return train_loader, eval_train_loader, eval_val_loader, eval_test_loader
def get_fsd50k(trial):
if 'mixup_ratio' in args.tune:
args.mixup_ratio = trial.suggest_categorical("mixup_ratio", [0, 0.2, 0.4, 0.6, 0.8])
if 'virtual_crop_scale' in args.tune:
args.virtual_crop_scale = (
trial.suggest_categorical("virtual_crop_scale_F", [1, 1.2, 1.4, 1.6, 1.8]),
trial.suggest_categorical("virtual_crop_scale_T", [1, 1.2, 1.4, 1.6, 1.8]),
)
norm_stats = [-4.950, 5.855]
train_loader = DataLoader(
datasets.FSD50K(args, split='train_val',
transform=transforms.AudioPairTransform(
args,
train_transform=True,
mixup_ratio=args.mixup_ratio,
),
norm_stats=norm_stats),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True, drop_last=True,
)
eval_train_loader = DataLoader(
datasets.FSD50K(args, split='train', transform=None, norm_stats=norm_stats),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True, drop_last=False,
)
eval_val_loader = DataLoader(
datasets.FSD50K(args, split='val', transform=None, norm_stats=norm_stats),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True, drop_last=False,
)
eval_test_loader = DataLoader(
datasets.FSD50K(args, split='test', transform=None, norm_stats=norm_stats),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True, drop_last=False,
)
return train_loader, eval_train_loader, eval_val_loader, eval_test_loader
def log_print(msg):
logger.info(msg)
print(msg)
def plot_and_save_intermediate_values(study, save_path):
target_state = [TrialState.PRUNED, TrialState.COMPLETE, TrialState.RUNNING]
trials = [trial for trial in study.trials if trial.state in target_state]
intermediate_values = []
for trial in trials:
if trial.intermediate_values:
sorted_intermediate_values = sorted(trial.intermediate_values.items())
x=tuple((x for x, _ in sorted_intermediate_values))
y=tuple((y for _, y in sorted_intermediate_values))
params = [(k,v) for k,v in trial.params.items()]
label_str = ','.join([f'{p[0]}={p[1]}' for p in params])
intermediate_values.append([trial.number] + [q for p in params for q in p] + list(y))
plt.plot(x, y, marker='o', label=label_str)
plt.xlabel('Epoch')
plt.ylabel('Score')
plt.title('Intermediate scores')
plt.legend(bbox_to_anchor=(1.05, 1.0), loc='upper left')
plt.tight_layout()
plt.show()
plt.savefig(os.path.join(save_path, 'intermediate_values.png'), bbox_inches = 'tight')
with open(os.path.join(save_path, 'intermediate_values.csv'), 'w') as f:
writer = csv.writer(f)
writer.writerows(intermediate_values)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='All args', parents=hyperparameters.get_hyperparameters())
parser.add_argument('--eval', type=str, default='linear', choices=['linear', 'knn'])
parser.add_argument('--tune', nargs='+', type=str, default=['lr', 'wd'], choices=HYPERPARAMETERS)
parser.add_argument('--n_trials', type=int, default=10)
parser.add_argument('--train_epochs', type=int, default=20)
args = parser.parse_args()
hyperparameters.setup_hyperparameters(args)
wandb_kwargs = dict(
project=f'Hyperparameter sweep {args.model_type} [{args.dataset}]',
config=args,
name=f"{'_'.join(args.tune)} {args.name} - {args.n_trials} trials",
settings=wandb.Settings(start_method="fork"),
)
wandbc = WeightsAndBiasesCallback(
metric_name='score',
wandb_kwargs=wandb_kwargs,
)
log_dir = f"logs/hparams/{args.dataset}/{args.model_type}{args.name}/"
os.makedirs(log_dir, exist_ok=True)
timestamp = datetime.datetime.now().strftime('%H:%M_%h%d')
log_path = os.path.join(log_dir, f"{'_'.join(args.tune)}_{timestamp}.log")
logger = logging.getLogger()
logger.setLevel(logging.INFO) # Setup the root logger
logger.addHandler(logging.FileHandler(log_path, mode="w"))
optuna.logging.set_verbosity(optuna.logging.INFO)
optuna.logging.enable_propagation() # Propagate logs to the root logger
study = optuna.create_study(
direction='maximize',
sampler=optuna.samplers.TPESampler(),
pruner=optuna.pruners.HyperbandPruner(),
)
study.optimize(objective, n_trials=args.n_trials, callbacks=[wandbc])
pruned_trials = study.get_trials(deepcopy=False, states=[TrialState.PRUNED])
complete_trials = study.get_trials(deepcopy=False, states=[TrialState.COMPLETE])
log_print("Study statistics: ")
log_print(f"\tNumber of finished trials: {len(study.trials)}")
log_print(f"\tNumber of pruned trials: {len(pruned_trials)}")
log_print(f"\tNumber of complete trials: {len(complete_trials)}")
log_print("Best trial:")
trial = study.best_trial
log_print(f"\tValue: {trial.value}")
wandb.run.summary["best top1"] = trial.value
log_print("\tParams: ")
for key, value in trial.params.items():
log_print("\t{}: {}".format(key, value))
wandb.run.summary[key] = value
optimization_history = optuna.visualization.plot_optimization_history(study)
intermediate_values = optuna.visualization.plot_intermediate_values(study)
param_importances = optuna.visualization.plot_param_importances(study)
param_relationships = optuna.visualization.plot_parallel_coordinate(study)
param_slices = optuna.visualization.plot_slice(study)
wandb.log(
{
"optimization_history": optimization_history,
"intermediate_values": intermediate_values,
"param_importances": param_importances,
"param_relationships": param_relationships,
"param_slices": param_slices,
}
)
wandb.finish()
plot_and_save_intermediate_values(study, save_path=log_dir)