forked from ihmeuw/pcv-impact
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbma.r
101 lines (82 loc) · 4.65 KB
/
bma.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# ---------------------------------------------------------------------------------------------------------------------------------------------
# David Phillips
#
# 3/2/2016
# Function that carries out Bayesian model averaging over multiple interrupted time series analyses.
# Inputs:
# * itsResults - list of lists. standard output from multiple runs of its.r
# Outputs (in a list):
# * data - the input data object with six new columns: [outcome]_pred, [outcome]_pred_upper, [outcome]_pred_lower, [outcome]_cf, [outcome]_cf_upper, [outcome]_cf_lower,
# * outcome - character. name of the outcome variable
# * cutpoint - date object containing the time point or points (up to 2) of intervention
# * effect size - a data frame containing the intercept shift associated with intervention, including uncertainty
# ---------------------------------------------------------------------------------------------------------------------------------------------
# To do
# - make this work with a list of mixed outcomes
# - tests
# Define function
bma = function(itsResults) {
# ---------------------------------------------------------------------------------
# Handle inputs
# isolate the outcome variables in the argument (currently only handles one)
outcome = itsResults[[1]]$outcome
upperVar = paste0(outcome, '_pred_upper')
lowerVar = paste0(outcome, '_pred_lower')
predVar = paste0(outcome, '_pred')
predSeVar = paste0(outcome, '_pred_se')
newEffectDate = itsResults[[1]]$newEffectDate
# isolate the datasets/gof in the argument into one big data table
data = data.table(NULL)
for(d in seq(length(itsResults))) {
data = rbind(data, itsResults[[d]]$data, fill=TRUE)
if (d==1) data[, bic:=itsResults[[d]]$gof$bic]
if (d!=1) data[is.na(bic), bic:=itsResults[[d]]$gof$bic]
}
# isolate gof/cutpoints,effect sizes into a separate data table
stats = data.table(NULL)
for(d in seq(length(itsResults))) {
tmp = data.table(cutpoint=itsResults[[d]]$cutpoint[1],
effect=as.numeric(itsResults[[d]]$effect_size[1,]),
effect_se=as.numeric(itsResults[[d]]$effect_size[4,]),
bic=itsResults[[d]]$gof$bic,
rmse=itsResults[[d]]$gof$rmse)
if (length(itsResults[[d]]$cutpoint)>1) tmp[, cutpoint2:=itsResults[[d]]$cutpoint[2]]
stats = rbind(stats, tmp)
}
# ---------------------------------------------------------------------------------
# -----------------------------------------------------------------------------------------------------------
# Average
# estimate weights under uniform prior
data[, weight:=exp(-.5*(bic-min(bic)))]
stats[, weight:=exp(-.5*(bic-min(bic)))]
# average predictions
meanData = suppressWarnings(data[, lapply(.SD, mean, weight=weight, na.rm=TRUE), by='moyr',
.SDcols=names(data)[!names(data) %in% c('moyr', 'weight', 'bic', 'rmse')]])
# compute RMSE
gof = data.table(rmse=sqrt(mean((meanData[[paste0(outcome, '_pred')]] - meanData[[outcome]])^2)))
# estimate prediction standard errors
tmpData = meanData[, c('moyr', predVar), with=FALSE]
setnames(tmpData, predVar, 'mean')
data = merge(data, tmpData, 'moyr')
data[, model_variance:=(log(get(predVar))-log(mean))^2]
# prediction uncertainty intervals
meanSe = suppressWarnings(data[, list(se=mean(get(predSeVar), weight=weight)), by='moyr']) # no model uncertainty (within-model variance only)
# meanSe = data[, list(se=sqrt(mean(get(predSeVar)^2+model_variance, weight=weight))), by='moyr'] # w/ model uncertainty
meanData = merge(meanData, meanSe, 'moyr')
meanData[, (upperVar):=exp(log(get(predVar))+1.95996*se)]
meanData[, (lowerVar):=exp(log(get(predVar))-1.95996*se)]
# recompute effect size using prediction interval instead of mean standard error
cf = log(meanData[moyr==newEffectDate][[paste0(outcome,'_pred_cf')]])
effect = log(meanData[moyr==newEffectDate][[paste0(outcome, '_pred')]]) - cf
effect_lower = log(meanData[moyr==newEffectDate][[paste0(outcome, '_pred_upper')]]) - cf
effect_upper = log(meanData[moyr==newEffectDate][[paste0(outcome, '_pred_lower')]]) - cf
effect_se = (effect_upper-effect)/1.95996
effect_size = data.table('effect'=c(effect, effect_upper, effect_lower, effect_se))
# -----------------------------------------------------------------------------------------------------------
# -------------------------------------------------------------------------------------------------
# Return output
return(list('data'=meanData, 'outcome'=outcome,
'cutpoint'=as.Date(c(min(cutpoints), max(cutpoints)), origin='1970-01-01'),
'effect_size'=effect_size, 'stats'=stats, newEffectDate=newEffectDate, gof=gof))
# -------------------------------------------------------------------------------------------------
}