diff --git a/lmo/_lm.py b/lmo/_lm.py index bbf430da..b41d17f2 100644 --- a/lmo/_lm.py +++ b/lmo/_lm.py @@ -357,7 +357,7 @@ def l_moment( - $(0, 0)$: The original **L**-moment, introduced by Hosking in 1990. - $(0, t)$: **LL**-moment (**L**inear combination of **L**owest - order statistics), instroduced by Bayazit & Onoz in 2002. + order statistics), introduced by Bayazit & Onoz in 2002. Assigns more weight to smaller observations. - $(s, 0)$: **LH**-moment (**L**inear combination of **H**igher order statistics), as described by Wang in 1997. diff --git a/lmo/_lm_co.py b/lmo/_lm_co.py index 480721d3..971645c3 100644 --- a/lmo/_lm_co.py +++ b/lmo/_lm_co.py @@ -85,7 +85,7 @@ def l_comoment( (1990). Useful for fitting the e.g. log-normal and generalized extreme value (GEV) distributions. - $(0, m)$: **LL**-moment (**L**inear combination of **L**owest - order statistics), instroduced by Bayazit & Onoz (2002). + order statistics), introduced by Bayazit & Onoz (2002). Assigns more weight to smaller observations. - $(s, 0)$: **LH**-moment (**L**inear combination of **H**igher order statistics), by Wang (1997). diff --git a/lmo/linalg.py b/lmo/linalg.py index 256d641e..9cd267d2 100644 --- a/lmo/linalg.py +++ b/lmo/linalg.py @@ -373,7 +373,7 @@ def trim_matrix( a bunch of L-moments, can be done using a single matrix multiplication (see [`lmo.linalg.sh_legendre`][lmo.linalg.sh_legendre]). By exploiting liniarity, it can easily be chained with this trim matrix, - to obtain a re-usable order-statistics -> trimmed L-moments + to obtain a reusable order-statistics -> trimmed L-moments transformation (matrix). Note that these linear transformations can be used in exactly the same way