-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlane_emden_fit.py
192 lines (187 loc) · 6.54 KB
/
lane_emden_fit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
"""
procedure to fit surface density profiles using the density associated
with polytropes
Sanchez Almeida, Trujilo, and Plastino, 2021, ApJ, in press
"""
# - imports
#from scipy.integrate import odeint
import numpy as np
import matplotlib.pyplot as plt
import sys
import time
from scipy.optimize import least_squares
from scipy.integrate import simps
from scipy.interpolate import interp2d #griddata
import pickle # some sort of save restore mechanism for variables
#
print('-----> Running:',sys.argv[0],' galaxno bbini mmini laaini rr_limit sb_limit')
#
#
# - Routine to compute the projected politropes
#
# reading the grid from 'lane_emden_grid1.py'
#
#gridname = 'grid0'
#gridname = 'grid1'
gridname = 'grid2'
#gridname='grid2g3'
#gridname = 'grid3'
file_save = './lane_emden_grid/'+gridname+'.p'
data = pickle.load(open(file_save,"rb"))
#
rr = data['rr'] # projected radial distance , equispaced in log
ss = data['ss'] # radial distance in 3D used to compute the grid.
pp = data['pp'] # shapes.
lnindex = data['lnindex']
print('Using '+gridname)
print('Index from ',lnindex.min(),' to ',lnindex.max())
#
lrr = np.log10(rr)
pp[np.where(pp == 0)]=1.e-50
lpp = np.log10(pp)
#
# defines the interpolarion
polyshape = interp2d(lnindex,lrr, lpp, kind='linear', copy=False, bounds_error=False, fill_value=-1)
#
# function to be called during LS minimization.
def lane_emden_suite(coeff,xdata,ydata,polyshape):
bb = coeff[0]
mm = coeff[1]
lxx = xdata - np.log10(bb) # x axis is in
lppinter = polyshape([mm],lxx)
lppinter = lppinter[:,0]
#
laa = ydata.mean() - lppinter.mean() # it is a constant in the lograithm amplitud by least squares
coeff[2] = laa
#
residual = lppinter+laa - ydata
#print(np.shape(lppinter),np.shape(lxx),np.shape(mm))
return residual
#
# - reading the data to be fitted
#
filedata ='./data/galaxies_edges_wnew_mass.profiles'
profile = pickle.load(open(filedata, 'rb'))
profno = 20
profno = 450
profno = 2
profno = 123
profno = np.int(sys.argv[1]) if len(sys.argv) > 1 else 2
scale = profile['scale'][profno]/0.396 # Nacho says 'scale' is kpc/pixel. 0.396 is arcsec/pixel in SDSS images.
# seems to be ok since re-scaled 'scale' agrees with the range provided the range of redshifts.
# Importantly, seeing FWHM is 1.4 in 'r', so 2 arcsec is a lot!!! (See DR7 webpage)
mstar = profile['mass'][profno]
dd = profile['step'][profno]
ldd = np.log10(dd)
arcsec = dd/scale
xdata = np.log10(dd)
# to know what is in: profile.keys()
mu_g_obs = profile['mu_g_obs'][profno]
rho = profile['rho'][profno]
bb = np.float(sys.argv[2]) if len(sys.argv) > 2 else 5.
mm = np.float(sys.argv[3]) if len(sys.argv) > 3 else 4.
laa = np.float(sys.argv[4]) if len(sys.argv) > 4 else 1.3
rr_limit = np.float(sys.argv[5]) if len(sys.argv) > 5 else 0.7
sb_limit = np.float(sys.argv[6]) if len(sys.argv) > 6 else 29
select = np.where(mu_g_obs < sb_limit) # ---- bright enough
xdata = xdata[select]
ydata = rho[select]
arcsec = arcsec[select]
select = np.where(arcsec > rr_limit) # ---- taking out the PSF ... very conservative.
xdata = xdata[select]
ydata = ydata[select]
#
# - Least squares fit to PP (projected politropes)
#
coeff0 = np.array([bb,mm,laa])
bounds = np.transpose([[0.1,50.],[1.5,5.05],[-1.,np.inf]])
result = least_squares(lane_emden_suite, coeff0, args=(xdata,ydata,polyshape), method='lm')#,max_nfev = 1000)
coeff = result.x
bb = coeff[0]
laa = coeff[2]
#print('laa=',laa)
mm = coeff[1]
fit = result.fun + ydata
rfit = result.fun
lxx = np.arange(-1.5,1.4,0.01) # controls the range of full fits to be shown
fullfit = polyshape([coeff[1]],lxx) + laa
lxx = lxx + np.log10(bb)
#
# error estimate; see pag. 98 of my notes.
#
hess = np.matmul(np.transpose(result.jac),result.jac)
ebb = rfit.std()/np.sqrt(hess[0,0])
emm = rfit.std()/np.sqrt(hess[1,1])
#
# -least squares fit to Sersic -- Einasto profiles.
#
def einastofit(coeff,xdata,ydata):
rho0 = coeff[0]
rprime = coeff[1]
alpha = coeff[2]
return np.log10(rho0*np.exp(-(xdata/rprime)**alpha))-ydata
#
rprime = 1.
rho0 = 1.
alpha = 1.
coeff0 = [rho0,rprime,alpha]
xxdata = 10**xdata
result = least_squares(einastofit, coeff0, args=(xxdata,ydata), method='lm')#,max_nfev = 1000)
coeff_einasto = result.x
fiteinasto = 10**(result.fun + ydata)
rfit_einasto = result.fun
rho0 = coeff_einasto[0]
rprime = coeff_einasto[1]
alpha = coeff_einasto[2]
fullfit_einasto = np.log10(rho0*np.exp(-(10**lxx/rprime)**alpha))
#
hess = np.matmul(np.transpose(result.jac),result.jac)
ealpha = rfit.std()/np.sqrt(hess[2,2])
nsersic = 1/alpha
ensersic = ealpha/alpha**2
#
#-----------------------------------------------
#
#-plots
fs = 18
plt.rcParams.update({'font.size': fs})
plt.ion()
plt.close(1) # to avoid getting multiple windows
fig, ax = plt.subplots(2,1, sharex = True, sharey = False,gridspec_kw={
'height_ratios': [6, 1]})
fig.subplots_adjust(hspace=0)
#
ax[0].set_yscale("log")
ymin = (10**ydata).min()/5.
ymax = (10**ydata).max()*2.
ax[0].set_ylim(ymin,ymax)
ax[0].set_ylabel(r"$\Sigma(R)\, [{\rm M}_\odot {\rm pc}^{-2}]$")
ax[0].set_xscale("log")
title ='Galaxy # '+'{:.0f}'.format(profno)+'\n'+r'$\log(M_\star/{\rm M}_\odot)$ = '+'{:.2f}'.format(mstar)
p = ax[0].plot(10**xdata,10**ydata,label=title,marker='o',ls='None')
color = p[0].get_color()
ax[0].plot(10**ldd,10**rho,label='Not used to fit',marker='o',ls='None',fillstyle='none',c=color)
ax[0].plot(10**xdata,rfit*1e-3,marker='o',c='r',ls='-',alpha=0.6,label='Residuals') # mock
cartel = '$m='+'{:.2f}$'.format(mm)+'$\pm$'+'{:.2f}'.format(emm)+'\n'+'$b=$'+'{:.2f}'.format(bb)+'$\pm$'+'{:.2f}'.format(ebb)+' kpc\n'+'RMS ='+'{:.3f}'.format(rfit.std())
p = ax[0].plot(10**xdata,10**fit,ls='-',lw=3,label=cartel)
color = p[0].get_color()
ax[0].plot(10**lxx,10**fullfit,lw=2,ls='--',c=color)
#
ax[0].plot(10**lxx,10**fullfit_einasto,lw=2,ls='--',label=r'Sérsic $n='+'{:.2f}$'.format(nsersic)+'\n'+'RMS ='+'{:.3f}'.format(rfit_einasto.std()))
#
ax[0].legend(loc=3,fontsize=fs*0.6)#,title=r'PP in ${\bf '+gridname+'}$')
#
ax[1].set_xlabel(r"$R$ [kpc]")
ax[1].set_ylabel(r"[dex]",fontsize=fs*0.7)
ax[1].tick_params(direction='in',axis='y',labelsize=fs*0.8)
ax[1].yaxis.set_major_formatter(plt.FormatStrFormatter('%4.1f'))
ax[1].yaxis.tick_right()
ax[1].plot(10**xdata,rfit,marker='o',c='r',ls='-',alpha=0.6)
ax[1].plot([-10,100],[0,0],lw=1,c='k',ls='-',alpha=0.2)
ax[1].set_ylim(-0.2,.2)
#
profno = str(profno)
outfile = './plots/lane_emden_fit_'+gridname+'_'+profno+'.pdf'
print('output at '+outfile)
plt.savefig(outfile,transparent='False',bbox_inches='tight')
plt.show()