-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathimage_folder_loader.py
76 lines (60 loc) · 2.16 KB
/
image_folder_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import torch.utils.data as data
from PIL import Image
import os
import os.path
IMG_EXTENSIONS = [
'.jpg', '.JPG', '.jpeg', '.JPEG',
'.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP',
]
def is_image_file(filename):
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
def find_classes(dir):
classes = os.listdir(dir)
classes.sort()
class_to_idx = {classes[i]: i for i in range(len(classes))}
return classes, class_to_idx
def make_dataset(dir, class_to_idx):
images = []
camids = []
for target in os.listdir(dir):
d = os.path.join(dir, target)
if not os.path.isdir(d):
continue
for filename in os.listdir(d):
if is_image_file(filename):
path = '{0}/{1}'.format(target, filename)
item = (path, class_to_idx[target])
images.append(item)
cameras = filename.split("c")
camids.append(int(cameras[1][0]))
return images, camids
def default_loader(path):
return Image.open(path).convert('RGB')
class ImageFolderLoader(data.Dataset):
def __init__(self, root, transform_1=None,
transform_2=None, target_transform=None,
loader=default_loader):
classes, class_to_idx = find_classes(root)
imgs, camids = make_dataset(root, class_to_idx)
self.root = root
self.imgs = imgs
self.camids = camids
self.classes = classes
self.class_to_idx = class_to_idx
self.transform_1 = transform_1
self.transform_2 = transform_2
self.target_transform = target_transform
self.loader = loader
def __getitem__(self, index):
path, target = self.imgs[index]
camid = self.camids[index]
img = self.loader(os.path.join(self.root, path))
if self.transform_1 is not None:
img1 = self.transform_1(img)
if self.transform_2 is not None:
img2 = self.transform_2(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img1, img2, target, camid
def __len__(self):
return len(self.imgs)