-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpytorch_CAM.py
98 lines (80 loc) · 2.96 KB
/
pytorch_CAM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# simple implementation of CAM in PyTorch for the networks such as ResNet, DenseNet, SqueezeNet, Inception
import io
import requests
from PIL import Image
from torchvision import models, transforms
from torch.autograd import Variable
from torch.nn import functional as F
import numpy as np
import cv2
import pdb
# input image
LABELS_URL = 'https://s3.amazonaws.com/outcome-blog/imagenet/labels.json'
IMG_URL = 'http://media.mlive.com/news_impact/photo/9933031-large.jpg'
# networks such as googlenet, resnet, densenet already use global average pooling at the end, so CAM could be used directly.
model_id = 1
if model_id == 1:
net = models.squeezenet1_1(pretrained=True)
finalconv_name = 'features' # this is the last conv layer of the network
elif model_id == 2:
net = models.resnet18(pretrained=True)
finalconv_name = 'layer4'
elif model_id == 3:
net = models.densenet161(pretrained=True)
finalconv_name = 'features'
net.eval()
# hook the feature extractor
features_blobs = []
def hook_feature(module, input, output):
features_blobs.append(output.data.cpu().numpy())
net._modules.get(finalconv_name).register_forward_hook(hook_feature)
# get the softmax weight
params = list(net.parameters())
weight_softmax = np.squeeze(params[-2].data.numpy())
def returnCAM(feature_conv, weight_softmax, class_idx):
# generate the class activation maps upsample to 256x256
size_upsample = (256, 256)
bz, nc, h, w = feature_conv.shape
output_cam = []
for idx in class_idx:
cam = weight_softmax[idx].dot(feature_conv.reshape((nc, h*w)))
cam = cam.reshape(h, w)
cam = cam - np.min(cam)
cam_img = cam / np.max(cam)
cam_img = np.uint8(255 * cam_img)
output_cam.append(cv2.resize(cam_img, size_upsample))
return output_cam
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
preprocess = transforms.Compose([
transforms.Resize((224,224)),
transforms.ToTensor(),
normalize
])
response = requests.get(IMG_URL)
img_pil = Image.open(io.BytesIO(response.content))
img_pil.save('test.jpg')
img_tensor = preprocess(img_pil)
img_variable = Variable(img_tensor.unsqueeze(0))
logit = net(img_variable)
# download the imagenet category list
classes = {int(key):value for (key, value)
in requests.get(LABELS_URL).json().items()}
h_x = F.softmax(logit, dim=1).data.squeeze()
probs, idx = h_x.sort(0, True)
probs = probs.numpy()
idx = idx.numpy()
# output the prediction
for i in range(0, 5):
print('{:.3f} -> {}'.format(probs[i], classes[idx[i]]))
# generate class activation mapping for the top1 prediction
CAMs = returnCAM(features_blobs[0], weight_softmax, [idx[0]])
# render the CAM and output
print('output CAM.jpg for the top1 prediction: %s'%classes[idx[0]])
img = cv2.imread('test.jpg')
height, width, _ = img.shape
heatmap = cv2.applyColorMap(cv2.resize(CAMs[0],(width, height)), cv2.COLORMAP_JET)
result = heatmap * 0.3 + img * 0.5
cv2.imwrite('CAM.jpg', result)