-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_reid.py
172 lines (140 loc) · 6.04 KB
/
test_reid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import torch
import numpy as np
from torchvision import datasets, models, transforms
import argparse
import os
from image_folder_loader import ImageFolderLoader
parser = argparse.ArgumentParser(description='Training')
parser.add_argument('--model_path', default='model_best', type=str, help='Model path')
parser.add_argument('--test_dir', default='/home/paul/datasets/market1501/pytorch', type=str, help='./test_data')
parser.add_argument('--batchsize', default=32, type=int, help='batchsize')
parser.add_argument('--multi', action='store_true', help='use multiple query')
opt = parser.parse_args()
test_dir = opt.test_dir
def test(model, queryloader, galleryloader, use_gpu, ranks=[1, 5, 10, 20]):
model.eval()
with torch.no_grad():
qf, q_pids, q_camids = [], [], []
for batch_idx, data in enumerate(queryloader):
imgs1, imgs2, labels, camids = data
if use_gpu:
imgs1, imgs2 = imgs1.cuda(), imgs2.cuda()
features = model(imgs1)
features = features.data.cpu()
qf.append(features)
q_pids.extend(labels)
q_camids.extend(camids)
qf = torch.cat(qf, 0)
q_pids = np.asarray(q_pids)
q_camids = np.asarray(q_camids)
print("Extracted features for query set, obtained {}-by-{} matrix".format(qf.size(0), qf.size(1)))
gf, g_pids, g_camids = [], [], []
for batch_idx, data in enumerate(galleryloader):
imgs1, imgs2, labels, camids = data
if use_gpu:
imgs1, imgs2 = imgs1.cuda(), imgs2.cuda()
features = model(imgs1)
features = features.data.cpu()
gf.append(features)
g_pids.extend(labels)
g_camids.extend(camids)
gf = torch.cat(gf, 0)
g_pids = np.asarray(g_pids)
g_camids = np.asarray(g_camids)
print("Extracted features for gallery set, obtained {}-by-{} matrix".format(gf.size(0), gf.size(1)))
m, n = qf.size(0), gf.size(0)
distmat = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, n) + \
torch.pow(gf, 2).sum(dim=1, keepdim=True).expand(n, m).t()
distmat.addmm_(1, -2, qf, gf.t())
distmat = distmat.numpy()
print("Computing CMC and mAP")
cmc, mAP = evaluate(distmat, q_pids, g_pids, q_camids, g_camids)
print("Results ----------")
print("mAP: {:.2%}".format(mAP))
print("CMC curve")
for r in ranks:
print("Rank-{:<3}: {:.2%}".format(r, cmc[r - 1]))
print("------------------")
return cmc[0]
def evaluate(distmat, q_pids, g_pids, q_camids, g_camids, max_rank=50):
"""Evaluation with market1501 metric
Key: for each query identity, its gallery images from the same camera view are discarded.
"""
num_q, num_g = distmat.shape
if num_g < max_rank:
max_rank = num_g
print("Note: number of gallery samples is quite small, got {}".format(num_g))
indices = np.argsort(distmat, axis=1)
matches = (g_pids[indices] == q_pids[:, np.newaxis]).astype(np.int32)
# compute cmc curve for each query
all_cmc = []
all_AP = []
num_valid_q = 0. # number of valid query
for q_idx in range(num_q):
# get query pid and camid
q_pid = q_pids[q_idx]
q_camid = q_camids[q_idx]
# remove gallery samples that have the same pid and camid with query
order = indices[q_idx]
remove = (g_pids[order] == q_pid) & (g_camids[order] == q_camid)
keep = np.invert(remove)
# compute cmc curve
orig_cmc = matches[q_idx][keep] # binary vector, positions with value 1 are correct matches
if not np.any(orig_cmc):
# this condition is true when query identity does not appear in gallery
continue
cmc = orig_cmc.cumsum()
cmc[cmc > 1] = 1
all_cmc.append(cmc[:max_rank])
num_valid_q += 1.
# compute average precision
# reference: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision
num_rel = orig_cmc.sum()
tmp_cmc = orig_cmc.cumsum()
tmp_cmc = [x / (i+1.) for i, x in enumerate(tmp_cmc)]
tmp_cmc = np.asarray(tmp_cmc) * orig_cmc
AP = tmp_cmc.sum() / num_rel
all_AP.append(AP)
assert num_valid_q > 0, "Error: all query identities do not appear in gallery"
all_cmc = np.asarray(all_cmc).astype(np.float32)
all_cmc = all_cmc.sum(0) / num_valid_q
mAP = np.mean(all_AP)
return all_cmc, mAP
# VGG-16 Takes 224x224 images as input, so we resize all of them
num_class = 751
data_transforms_1 = transforms.Compose([
transforms.Resize((224, 224), interpolation=3),
#transforms.CenterCrop(224),
transforms.ToTensor(),
])
data_transforms_2 = transforms.Compose([
transforms.Resize((224, 224), interpolation=3),
#transforms.CenterCrop(224),
transforms.ToTensor(),
])
image_datasets = {x: ImageFolderLoader(os.path.join(test_dir, x),
transform_1=data_transforms_1, transform_2=data_transforms_2)
for x in ['gallery', 'query', 'multi-query']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x],
batch_size=opt.batchsize,
shuffle=False, num_workers=0)
for x in ['gallery', 'query', 'multi-query']}
class_names = image_datasets['query'].classes
use_gpu = torch.cuda.is_available()
def load_network(network):
save_path = os.path.join('./model', opt.model_path)
network.load_state_dict(torch.load(save_path))
return network
use_gpu = torch.cuda.is_available()
if __name__ == "__main__":
from reid_attention import VGG_16
from resnet_attention import ResNetAttention
network = ResNetAttention(num_class)
model = load_network(network)
#removed = list(model.children())[:-1]
#from torch import nn
#model = nn.Sequential(*removed)
if use_gpu:
model = model.cuda()
test(model, queryloader=dataloaders['query'], galleryloader=dataloaders['gallery'],
use_gpu=use_gpu)