-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_metrics.py
89 lines (80 loc) · 3.84 KB
/
plot_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import numpy as np
import datetime
import matplotlib.pyplot as plt
def plot_metrics_TrnVal(x_array, trn_metric, val_metric, val_metric2=None,
title='Loss', xlabel='Iterations', ylabel='Batch error',
ylim=None, legend=['Training', 'Validation'],
save_folder=None, check_best=None):
""" It plots a metric, training and validation, and saves the image.
By default, it has the names for the losses. A third set can be introduced.
"""
fig = plt.figure(figsize=(20,10))
plt.plot(x_array, trn_metric, 'b')
plt.plot(x_array, val_metric, 'r')
if val_metric2 is not None:
plt.plot(x_array, val_metric2, 'g')
plt.title(title, fontsize=20)
plt.xlabel(xlabel, fontsize=20)
plt.ylabel(ylabel, fontsize=20)
plt.legend(legend, title='Image type', fontsize=15)
if ylim is None:
ylim = np.nanmax([np.nanmax(trn_metric), np.nanmax(val_metric)])
plt.ylim([0,ylim])
else:
plt.ylim(ylim)
plt.grid(True)
plt.minorticks_on()
plt.grid(which='major', linestyle='-', linewidth='1.0', color='black')
plt.grid(which='minor', linestyle=':', linewidth='0.5', color='black')
plt.tick_params(axis='both', which='major', labelsize=15)
plt.tick_params(axis='both', which='minor', labelsize=5)
if save_folder is not None:
fileOut = save_folder + title + "_Validation.png"
plt.savefig(fileOut) #save the figure in a file
#plt.show()
plt.clf()
plt.close(fig)
if check_best is not None and len(trn_metric) > 3:
best_metric = val_metric if val_metric2 is None else val_metric + \
val_metric2
ix_model = np.argsort(best_metric)
if check_best == 'max':
ix_model = np.flip(ix_model)
print('The best 3 models based on ' + title + ' are: ')
print(' ' + str(1+ix_model[0]) + ': ' + str(best_metric[ix_model[0]]))
print(' ' + str(1+ix_model[1]) + ': ' + str(best_metric[ix_model[1]]))
print(' ' + str(1+ix_model[2]) + ': ' + str(best_metric[ix_model[2]]))
def print_metrics_model(metrics, stepBatch=0, typeSet='Training', num=1):
""" It prints the last values in *metrics* """
if num == 1:
val0 = metrics[0,-1]
val1 = metrics[1,-1]
else:
end = metrics.shape[1]
val0 = np.mean(metrics[0,-num:end])
val1 = np.mean(metrics[1,-num:end])
print(' ' + typeSet + ', crossEntropy-loss ' +
'at step %d: %.4f' % (stepBatch, val0))
print(' ' + typeSet + ', accuracy: %.4f' % val1)
def print_time_cost(timeCur, timeIni=None, iCurr=None, iNmbr=None, eCurr=1,
eNmbr=None, it2ev=1, strT='training', flagFuture=False):
""" Given the time at the beginning of the cycle (timeCur), it prints the
time spent in that cycle. Optionally, it prints the time since the
beginning of the training (timeIni) and the expected future time.
All times are in datetime format.
- timeCur: The time at the beginning of the current iteration
- timeIni: The time at the beginning of the training
- iCurr: The current iteration (within the current epoch)
- iNmbr: The total number of iterations in one epoch.
- eCurr: The current epoch
- eNmbr: The total number of epochs.
"""
OneIter = datetime.datetime.now() - timeCur
print('Epoch '+ str(eCurr) +'. Preparing the ' + strT +
' took: ', OneIter, ' seconds')
if flagFuture:
PastTime = datetime.datetime.now() - timeIni
FutrTime = (iNmbr - iCurr + iNmbr*(eNmbr-eCurr) ) * OneIter / it2ev
print(' Past time: ', PastTime, ' seconds')
print(' Future time: ', FutrTime, ' seconds')
print(' Total time: ', PastTime + FutrTime, ' seconds')