forked from ctlearn-project/ctlearn_optimizer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmyconfig.yml
53 lines (53 loc) · 1.91 KB
/
myconfig.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
Data:
Input: {batch_size: 64, map: true, num_parallel_calls: 2, prefetch: true, prefetch_buffer_size: 1,
shuffle: true, shuffle_buffer_size: 10000}
Loading:
example_type: single_tel
merge_tel_types: true
min_num_tels: 1
seed: 1234
selected_tel_types: ['MST:NectarCam']
validation_split: 0.1
Processing: {sorting: null}
file_list: data_train.txt
format: HDF5
Image Mapping:
camera_types: [NectarCam]
hex_conversion_algorithm: {ASTRICam: oversampling, CHEC: oversampling, DigiCam: oversampling,
FlashCam: oversampling, LSTCam: oversampling, NectarCam: oversampling, SCTCam: oversampling,
VERITAS: oversampling}
interpolation_image_shape:
NectarCam: [110, 110, 1]
padding: {ASTRICam: 0, CHEC: 0, DigiCam: 1, FlashCam: 1, LSTCam: 2, NectarCam: 2,
SCTCam: 4, VERITAS: 1}
Logging: {model_directory: ./run1}
Model:
Model Parameters:
basic:
batchnorm_decay: 0.99
conv_block:
batchnorm: false
bottleneck: null
layers:
- {filters: 117, kernel_size: 12}
- {filters: 234, kernel_size: 10}
- {filters: 468, kernel_size: 7}
- {filters: 936, kernel_size: 6}
max_pool: {size: 2, strides: 2}
cnn_rnn:
cnn_block: {function: conv_block, module: basic}
dropout_rate: 0.5
pretrained_weights: null
single_tel:
network: {function: conv_block, module: basic}
pretrained_weights: null
model: {function: single_tel_model, module: single_tel}
model_directory: /home/jredondo/ctlearn/ctlearn/default_models
Prediction: {export_as_file: true, prediction_file_path: ./run1/predictions_run1.csv,
true_labels_given: true}
TensorFlow: {run_TFDBG: false}
Training:
Hyperparameters: {adam_epsilon: 1.0e-08, apply_class_weights: true, base_learning_rate: 5.0e-05,
optimizer: Adam, scale_learning_rate: false, variables_to_train: null}
num_training_steps_per_validation: 2500
num_validations: 15