forked from luigifreda/pyslam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
optimizer_g2o.py
448 lines (367 loc) · 15.9 KB
/
optimizer_g2o.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
"""
* This file is part of PYSLAM
*
* Copyright (C) 2016-present Luigi Freda <luigi dot freda at gmail dot com>
*
* PYSLAM is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* PYSLAM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PYSLAM. If not, see <http://www.gnu.org/licenses/>.
"""
import math
import numpy as np
from threading import RLock
import g2o
from utils_geom import poseRt
from frame import Frame
from utils import Printer
from map_point import MapPoint
# ------------------------------------------------------------------------------------------
# optimize pixel reprojection error, bundle adjustment
def bundle_adjustment(keyframes, points, local_window, fixed_points=False, verbose=False, rounds=10, use_robust_kernel=False, abort_flag=g2o.Flag()):
if local_window is None:
local_frames = keyframes
else:
local_frames = keyframes[-local_window:]
# create g2o optimizer
opt = g2o.SparseOptimizer()
block_solver = g2o.BlockSolverSE3(g2o.LinearSolverCSparseSE3())
#block_solver = g2o.BlockSolverSE3(g2o.LinearSolverCholmodSE3())
solver = g2o.OptimizationAlgorithmLevenberg(block_solver)
opt.set_algorithm(solver)
opt.set_force_stop_flag(abort_flag)
thHuberMono = math.sqrt(5.991); # chi-square 2 DOFS
graph_keyframes, graph_points = {}, {}
# add frame vertices to graph
for kf in (local_frames if fixed_points else keyframes): # if points are fixed then consider just the local frames, otherwise we need all frames or at least two frames for each point
if kf.is_bad:
continue
#print('adding vertex frame ', f.id, ' to graph')
se3 = g2o.SE3Quat(kf.Rcw, kf.tcw)
v_se3 = g2o.VertexSE3Expmap()
v_se3.set_estimate(se3)
v_se3.set_id(kf.kid * 2) # even ids (use f.kid here!)
v_se3.set_fixed(kf.kid==0 or kf not in local_frames) #(use f.kid here!)
opt.add_vertex(v_se3)
# confirm pose correctness
#est = v_se3.estimate()
#assert np.allclose(pose[0:3, 0:3], est.rotation().matrix())
#assert np.allclose(pose[0:3, 3], est.translation())
graph_keyframes[kf] = v_se3
num_edges = 0
# add point vertices to graph
for p in points:
assert(p is not None)
if p.is_bad: # do not consider bad points
continue
if __debug__:
if not any([f in keyframes for f in p.keyframes()]):
Printer.red('point without a viewing frame!!')
continue
#print('adding vertex point ', p.id,' to graph')
v_p = g2o.VertexSBAPointXYZ()
v_p.set_id(p.id * 2 + 1) # odd ids
v_p.set_estimate(p.pt[0:3])
v_p.set_marginalized(True)
v_p.set_fixed(fixed_points)
opt.add_vertex(v_p)
graph_points[p] = v_p
# add edges
for kf, idx in p.observations():
if kf.is_bad:
continue
if kf not in graph_keyframes:
continue
#print('adding edge between point ', p.id,' and frame ', f.id)
edge = g2o.EdgeSE3ProjectXYZ()
edge.set_vertex(0, v_p)
edge.set_vertex(1, graph_keyframes[kf])
edge.set_measurement(kf.kpsu[idx])
invSigma2 = Frame.feature_manager.inv_level_sigmas2[kf.octaves[idx]]
edge.set_information(np.eye(2)*invSigma2)
if use_robust_kernel:
edge.set_robust_kernel(g2o.RobustKernelHuber(thHuberMono))
edge.fx = kf.camera.fx
edge.fy = kf.camera.fy
edge.cx = kf.camera.cx
edge.cy = kf.camera.cy
opt.add_edge(edge)
num_edges += 1
if verbose:
opt.set_verbose(True)
opt.initialize_optimization()
opt.optimize(rounds)
# put frames back
for kf in graph_keyframes:
est = graph_keyframes[kf].estimate()
#R = est.rotation().matrix()
#t = est.translation()
#f.update_pose(poseRt(R, t))
kf.update_pose(g2o.Isometry3d(est.orientation(), est.position()))
# put points back
if not fixed_points:
for p in graph_points:
p.update_position(np.array(graph_points[p].estimate()))
p.update_normal_and_depth(force=True)
mean_squared_error = opt.active_chi2()/max(num_edges,1)
return mean_squared_error
# ------------------------------------------------------------------------------------------
# optimize points reprojection error:
# - frame pose is optimized
# - 3D points observed in frame are considered fixed
# output:
# - mean_squared_error
# - is_ok: is the pose optimization successful?
# - num_valid_points: number of inliers detected by the optimization
# N.B.: access frames from tracking thread, no need to lock frame fields
def pose_optimization(frame, verbose=False, rounds=10):
is_ok = True
# create g2o optimizer
opt = g2o.SparseOptimizer()
#block_solver = g2o.BlockSolverSE3(g2o.LinearSolverCSparseSE3())
#block_solver = g2o.BlockSolverSE3(g2o.LinearSolverDenseSE3())
block_solver = g2o.BlockSolverSE3(g2o.LinearSolverEigenSE3())
solver = g2o.OptimizationAlgorithmLevenberg(block_solver)
opt.set_algorithm(solver)
#robust_kernel = g2o.RobustKernelHuber(np.sqrt(5.991)) # chi-square 2 DOFs
thHuberMono = math.sqrt(5.991); # chi-square 2 DOFS
point_edge_pairs = {}
num_point_edges = 0
v_se3 = g2o.VertexSE3Expmap()
v_se3.set_estimate(g2o.SE3Quat(frame.Rcw, frame.tcw))
v_se3.set_id(0)
v_se3.set_fixed(False)
opt.add_vertex(v_se3)
with MapPoint.global_lock:
# add point vertices to graph
for idx, p in enumerate(frame.points):
if p is None:
continue
# reset outlier flag
frame.outliers[idx] = False
# add edge
#print('adding edge between point ', p.id,' and frame ', frame.id)
edge = g2o.EdgeSE3ProjectXYZOnlyPose()
edge.set_vertex(0, opt.vertex(0))
edge.set_measurement(frame.kpsu[idx])
invSigma2 = Frame.feature_manager.inv_level_sigmas2[frame.octaves[idx]]
edge.set_information(np.eye(2)*invSigma2)
edge.set_robust_kernel(g2o.RobustKernelHuber(thHuberMono))
edge.fx = frame.camera.fx
edge.fy = frame.camera.fy
edge.cx = frame.camera.cx
edge.cy = frame.camera.cy
edge.Xw = p.pt[0:3]
opt.add_edge(edge)
point_edge_pairs[p] = (edge, idx) # one edge per point
num_point_edges += 1
if num_point_edges < 3:
Printer.red('pose_optimization: not enough correspondences!')
is_ok = False
return 0, is_ok, 0
if verbose:
opt.set_verbose(True)
# perform 4 optimizations:
# after each optimization we classify observation as inlier/outlier;
# at the next optimization, outliers are not included, but at the end they can be classified as inliers again
chi2Mono = 5.991 # chi-square 2 DOFs
num_bad_point_edges = 0
for it in range(4):
v_se3.set_estimate(g2o.SE3Quat(frame.Rcw, frame.tcw))
opt.initialize_optimization()
opt.optimize(rounds)
num_bad_point_edges = 0
for p, edge_pair in point_edge_pairs.items():
edge, idx = edge_pair
if frame.outliers[idx]:
edge.compute_error()
chi2 = edge.chi2()
if chi2 > chi2Mono:
frame.outliers[idx] = True
edge.set_level(1)
num_bad_point_edges +=1
else:
frame.outliers[idx] = False
edge.set_level(0)
if it == 2:
edge.set_robust_kernel(None)
if len(opt.edges()) < 10:
Printer.red('pose_optimization: stopped - not enough edges!')
is_ok = False
break
print('pose optimization: available ', num_point_edges, ' points, found ', num_bad_point_edges, ' bad points')
if num_point_edges == num_bad_point_edges:
Printer.red('pose_optimization: all the available correspondences are bad!')
is_ok = False
# update pose estimation
if is_ok:
est = v_se3.estimate()
# R = est.rotation().matrix()
# t = est.translation()
# frame.update_pose(poseRt(R, t))
frame.update_pose(g2o.Isometry3d(est.orientation(), est.position()))
# since we have only one frame here, each edge corresponds to a single distinct point
num_valid_points = num_point_edges - num_bad_point_edges
mean_squared_error = opt.active_chi2()/max(num_valid_points,1)
return mean_squared_error, is_ok, num_valid_points
# ------------------------------------------------------------------------------------------
# local bundle adjustment (optimize points reprojection error)
# - frames and points are optimized
# - frames_ref are fixed
def local_bundle_adjustment(keyframes, points, keyframes_ref=[], fixed_points=False, verbose=False, rounds=10, abort_flag=g2o.Flag(), map_lock=None):
# create g2o optimizer
opt = g2o.SparseOptimizer()
block_solver = g2o.BlockSolverSE3(g2o.LinearSolverCSparseSE3())
#block_solver = g2o.BlockSolverSE3(g2o.LinearSolverEigenSE3())
#block_solver = g2o.BlockSolverSE3(g2o.LinearSolverCholmodSE3())
solver = g2o.OptimizationAlgorithmLevenberg(block_solver)
opt.set_algorithm(solver)
opt.set_force_stop_flag(abort_flag)
#robust_kernel = g2o.RobustKernelHuber(np.sqrt(5.991)) # chi-square 2 DOFs
thHuberMono = math.sqrt(5.991); # chi-square 2 DOFS
graph_keyframes, graph_points = {}, {}
# add frame vertices to graph
for kf in keyframes:
if kf.is_bad:
continue
#print('adding vertex frame ', f.id, ' to graph')
se3 = g2o.SE3Quat(kf.Rcw, kf.tcw)
v_se3 = g2o.VertexSE3Expmap()
v_se3.set_estimate(se3)
v_se3.set_id(kf.kid * 2) # even ids (use f.kid here!)
v_se3.set_fixed(kf.kid==0) # (use f.kid here!)
opt.add_vertex(v_se3)
graph_keyframes[kf] = v_se3
# confirm pose correctness
#est = v_se3.estimate()
#assert np.allclose(pose[0:3, 0:3], est.rotation().matrix())
#assert np.allclose(pose[0:3, 3], est.translation())
# add reference frame vertices to graph
for kf in keyframes_ref:
if kf.is_bad:
continue
#print('adding vertex frame ', f.id, ' to graph')
se3 = g2o.SE3Quat(kf.Rcw, kf.tcw)
v_se3 = g2o.VertexSE3Expmap()
v_se3.set_estimate(se3)
v_se3.set_id(kf.kid * 2) # even ids (use f.kid here!)
v_se3.set_fixed(True)
opt.add_vertex(v_se3)
graph_keyframes[kf] = v_se3
graph_edges = {}
num_edges = 0
num_bad_edges = 0
# add point vertices to graph
for p in points:
assert(p is not None)
if p.is_bad: # do not consider bad points
continue
if not any([f in keyframes for f in p.keyframes()]):
Printer.orange('point %d without a viewing keyframe in input keyframes!!' %(p.id))
#Printer.orange(' keyframes: ',p.observations_string())
continue
#print('adding vertex point ', p.id,' to graph')
v_p = g2o.VertexSBAPointXYZ()
v_p.set_id(p.id * 2 + 1) # odd ids
v_p.set_estimate(p.pt[0:3])
v_p.set_marginalized(True)
v_p.set_fixed(fixed_points)
opt.add_vertex(v_p)
graph_points[p] = v_p
# add edges
for kf, p_idx in p.observations():
if kf.is_bad:
continue
if kf not in graph_keyframes:
continue
if __debug__:
p_f = kf.get_point_match(p_idx)
if p_f != p:
print('frame: ', kf.id, ' missing point ', p.id, ' at index p_idx: ', p_idx)
if p_f is not None:
print('p_f:', p_f)
print('p:',p)
assert(kf.get_point_match(p_idx) is p)
#print('adding edge between point ', p.id,' and frame ', f.id)
edge = g2o.EdgeSE3ProjectXYZ()
edge.set_vertex(0, v_p)
edge.set_vertex(1, graph_keyframes[kf])
edge.set_measurement(kf.kpsu[p_idx])
invSigma2 = Frame.feature_manager.inv_level_sigmas2[kf.octaves[p_idx]]
edge.set_information(np.eye(2)*invSigma2)
edge.set_robust_kernel(g2o.RobustKernelHuber(thHuberMono))
edge.fx = kf.camera.fx
edge.fy = kf.camera.fy
edge.cx = kf.camera.cx
edge.cy = kf.camera.cy
opt.add_edge(edge)
graph_edges[edge] = (p,kf,p_idx) # one has kf.points[p_idx] == p
num_edges += 1
if verbose:
opt.set_verbose(True)
if abort_flag.value:
return -1,0
# initial optimization
opt.initialize_optimization()
opt.optimize(5)
if not abort_flag.value:
chi2Mono = 5.991 # chi-square 2 DOFs
# check inliers observation
for edge, edge_data in graph_edges.items():
p = edge_data[0]
if p.is_bad:
continue
if edge.chi2() > chi2Mono or not edge.is_depth_positive():
edge.set_level(1)
num_bad_edges += 1
edge.set_robust_kernel(None)
# optimize again without outliers
opt.initialize_optimization()
opt.optimize(rounds)
# search for final outlier observations and clean map
num_bad_observations = 0 # final bad observations
outliers_data = []
for edge, edge_data in graph_edges.items():
p, kf, p_idx = edge_data
if p.is_bad:
continue
assert(kf.get_point_match(p_idx) is p)
if edge.chi2() > chi2Mono or not edge.is_depth_positive():
num_bad_observations += 1
outliers_data.append(edge_data)
if map_lock is None:
map_lock = RLock() # put a fake lock
with map_lock:
# remove outlier observations
for d in outliers_data:
p, kf, p_idx = d
p_f = kf.get_point_match(p_idx)
if p_f is not None:
assert(p_f is p)
p.remove_observation(kf,p_idx)
# the following instruction is now included in p.remove_observation()
#f.remove_point(p) # it removes multiple point instances (if these are present)
#f.remove_point_match(p_idx) # this does not remove multiple point instances, but now there cannot be multiple instances any more
# put frames back
for kf in graph_keyframes:
est = graph_keyframes[kf].estimate()
#R = est.rotation().matrix()
#t = est.translation()
#f.update_pose(poseRt(R, t))
kf.update_pose(g2o.Isometry3d(est.orientation(), est.position()))
# put points back
if not fixed_points:
for p in graph_points:
p.update_position(np.array(graph_points[p].estimate()))
p.update_normal_and_depth(force=True)
active_edges = num_edges-num_bad_edges
mean_squared_error = opt.active_chi2()/active_edges
return mean_squared_error, num_bad_observations/max(num_edges,1)