forked from luigifreda/pyslam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_img.py
261 lines (227 loc) · 10.9 KB
/
utils_img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
"""
* This file is part of PYSLAM
*
* Copyright (C) 2016-present Luigi Freda <luigi dot freda at gmail dot com>
*
* PYSLAM is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* PYSLAM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PYSLAM. If not, see <http://www.gnu.org/licenses/>.
"""
import os
import numpy as np
import cv2
import math
from utils_geom import add_ones, homography_matrix
from utils_draw import draw_random_img
from utils import Printer
# combine two images horizontally
def combine_images_horizontally(img1, img2):
if img1.ndim<=2:
img1 = cv2.cvtColor(img1,cv2.COLOR_GRAY2RGB)
if img2.ndim<=2:
img2 = cv2.cvtColor(img2,cv2.COLOR_GRAY2RGB)
h1, w1 = img1.shape[:2]
h2, w2 = img2.shape[:2]
img3 = np.zeros((max(h1, h2), w1+w2,3), np.uint8)
img3[:h1, :w1,:3] = img1
img3[:h2, w1:w1+w2,:3] = img2
return img3
# create a generator over an image to extract 'row_divs' x 'col_divs' sub-blocks
def img_blocks(img, row_divs, col_divs):
rows, cols = img.shape[:2]
#print('img.shape: ', img.shape)
xs = np.uint32(np.rint(np.linspace(0, cols, num=col_divs+1))) # num = Number of samples to generate
ys = np.uint32(np.rint(np.linspace(0, rows, num=row_divs+1)))
#print('img_blocks xs: ', xs)
#print('img_blocks ys: ', ys)
ystarts, yends = ys[:-1], ys[1:]
xstarts, xends = xs[:-1], xs[1:]
for y1, y2 in zip(ystarts, yends):
for x1, x2 in zip(xstarts, xends):
yield img[y1:y2, x1:x2], y1, x1 # return block, row, col
def mask_block(mask,x1,x2,y1,y2):
if mask is None:
return None
else:
return mask[y1:y2, x1:x2]
# create a generator over an image to extract 'row_divs' x 'col_divs' sub-blocks
def img_mask_blocks(img, mask, row_divs, col_divs):
rows, cols = img.shape[:2]
#print('img.shape: ', img.shape)
xs = np.uint32(np.rint(np.linspace(0, cols, num=col_divs+1))) # num = Number of samples to generate
ys = np.uint32(np.rint(np.linspace(0, rows, num=row_divs+1)))
#print('img_blocks xs: ', xs)
#print('img_blocks ys: ', ys)
ystarts, yends = ys[:-1], ys[1:]
xstarts, xends = xs[:-1], xs[1:]
for y1, y2 in zip(ystarts, yends):
for x1, x2 in zip(xstarts, xends):
yield img[y1:y2, x1:x2], mask_block(mask,x1,x2,y1,y2), y1, x1 # return block, row, col
# create a generator over an image to produce a pyramid of images in the scale space by using the input scale factor
# N.B: check the newer Pyramid class in pyramid.py!
def pyramid(image, scale=1.2, minSize=(30, 30), gauss_filter=True, sigma0=1.0):
level = 0
inv_scale = 1./scale
# from https://github.com/opencv/opencv/blob/173442bb2ecd527f1884d96d7327bff293f0c65a/modules/nonfree/src/sift.cpp#L212
# \sigma_{total}^2 = \sigma_{i}^2 + \sigma_{i-1}^2
sigma_nominal = 0.5 # no filtering on the original image from https://www.vlfeat.org/api/sift.html#sift-tech-ss
#sigma0 = 1.0 # N.B.: SIFT use 1.6 for this value
sigma_prev = sigma_nominal
sigma_total = math.pow(scale,level) * sigma0
print('level %d, sigma_total: %f' %(level,sigma_total))
sigma_cur = math.sqrt(sigma_total*sigma_total - sigma_prev*sigma_prev)
sigma_prev = sigma_cur
if gauss_filter:
image = cv2.GaussianBlur(image,ksize=(0,0),sigmaX=sigma_cur)
# yield the original image
yield image, level
while True:
level += 1
sigma_total = math.pow(scale,level) * sigma0
print('level %d, sigma_total: %f' %(level,sigma_total))
sigma_cur = math.sqrt(sigma_total*sigma_total - sigma_prev*sigma_prev)
sigma_prev = sigma_cur
if gauss_filter:
blur = cv2.GaussianBlur(image,ksize=(0,0),sigmaX=sigma_cur)
image = cv2.resize(blur,(0,0),fx=inv_scale,fy=inv_scale)#,interpolation = cv2.INTER_NEAREST)
else:
image = cv2.resize(image,(0,0),fx=inv_scale,fy=inv_scale)#,interpolation = cv2.INTER_NEAREST)
# if the resized image does not meet the supplied minimum
# size, then stop constructing the pyramid
if image.shape[0] < minSize[1] or image.shape[1] < minSize[0]:
break
# yield the next image in the pyramid
yield image, level
# N.B.: if you want the mask indexs, you can return mask_idxs = (mask.ravel() == 1)
def mask_from_polygon(size,pts):
pts = pts.astype(np.int32) #reshape(-1,1,2)
mask = np.zeros(size[:2],np.uint8)
mask = cv2.fillConvexPoly(mask,pts,255)
return mask
# rotate an image by adjusting the output image size in order to contain the rotated image
# angle in degrees
def rotate_img(img, center=None, angle=0, scale=1):
(h, w) = img.shape[:2]
if center is None:
center = (w / 2, h / 2)
img_box = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ])
#print('img_box:',img_box)
M = cv2.getRotationMatrix2D(center, angle, scale)
# grab sin and cos from matrix
cos = np.abs(M[0, 0])
sin = np.abs(M[0, 1])
# compute the new bounding dimensions of the image
new_w = int((w * cos) + (h * sin))
new_h = int((w * sin) + (h * cos))
# adjust the rotation matrix to take into account translation (in the new image)
M[0, 2] += (new_w / 2) - center[0]
M[1, 2] += (new_h / 2) - center[1]
rotated_img_box = (M @ add_ones(img_box).T).T
#print('rotated_img_box:',rotated_img_box)
img_out = cv2.warpAffine(img, M, (new_w, new_h))
return img_out, rotated_img_box, M
# transform an image by rotating and translating the camera (camera-x along image-x, camera-y along image-y, camera-z along the optical axis)
# the image is assumed to lie on the plane Z=1 (in front of the camera at distance d=1 along the optical axis);
# we compute the homography induced by the plane Z=1 when the camera is moved from [I|0] to [R|t] (see homography_matrix());
# adjust_frame => adjust the frame or not in order to contain the transformed image, in this case tx,ty are useless
# tx=0.5 correspond to half image width (see homography_matrix());
# angles input are in degrees
def transform_img(img,rotx,roty,rotz,tx=0,ty=0,scale=1,adjust_frame=True):
roll = rotx*math.pi/180.0
pitch = roty*math.pi/180.0
yaw = rotz*math.pi/180.0
# N.B.: in the computed homography_matrix we set d=1 (see homography_matrix())
# u=fx*X/Z => on Z=d=1 one has u=fx*X/1
# if we shift the camera of tz along Z, then one has u'=fx*X/(1-tz)
# hence we have a zoom_factor = 1/(1-tz) => tz = (zoom_factor - 1)/zoom_factor
tz = (scale - 1)/scale
(h, w) = img.shape[:2]
center = np.float32([w / 2, h / 2, 1])
img_box = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ])
#print('img_box:',img_box)
H = homography_matrix(img,roll,pitch,yaw,tx,ty,tz)
#print('H:',H)
transformed_img_box = (H @ add_ones(img_box).T)
transformed_img_box = (transformed_img_box[:2]/transformed_img_box[2]).T
transformed_center = (H @ center.T).T
#print('transformed_img_box:',transformed_img_box)
if adjust_frame:
# adjust the frame in order to contain the transformed image
min_u = math.floor(transformed_img_box[:,0].min())
max_u = math.ceil(transformed_img_box[:,0].max())
min_v = math.floor(transformed_img_box[:,1].min())
max_v = math.ceil(transformed_img_box[:,1].max())
new_w = max_u-min_u
new_h = max_v-min_v
if H[2,2] != 0:
H = H/H[2, 2]
T = np.array([[ 1, 0, -min_u],
[ 0, 1, -min_v],
[ 0, 0, 1]])
H = T @ H
transformed_img_box = (H @ add_ones(img_box).T)
transformed_img_box = (transformed_img_box[:2]/transformed_img_box[2]).T
transformed_center = (H @ center.T).T
else:
# simulate the camera pose change
new_w = w
new_h = h
img_out = cv2.warpPerspective(img, H, (new_w,new_h))
return img_out, transformed_img_box, H
# add 'disturbing' background on `img` outside the given bounding `img_box`
def add_background(img, img_box, img_background=None):
if img_background is None:
# create random image
img_background = draw_random_img(img.shape)
else:
# check if we have to resize img_background
if img_background.shape != img.shape:
#print('resizing img background')
(h, w) = img.shape[:2]
img_background = cv2.resize(img_background,(w,h))
# check if we have to convert to gray image
if img.ndim == 2:
img_background = cv2.cvtColor(img_background,cv2.COLOR_RGB2GRAY)
#print('img.shape:',img.shape,', img_background.shape:',img_background.shape)
mask = mask_from_polygon(img.shape,img_box)
inverse_mask = cv2.bitwise_not(mask)
img_background = cv2.bitwise_or(img_background, img_background, mask=inverse_mask)
# combine foreground+background
final = cv2.bitwise_or(img, img_background)
return final
def proc_clahe(img):
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
lab = cv2.cvtColor(img, cv2.COLOR_RGB2Lab)
lab[:, :, 0] = clahe.apply(lab[:, :, 0])
return cv2.cvtColor(lab, cv2.COLOR_Lab2RGB)
# create a scaled image of uint8 from a image of floats
def img_from_floats(img_flt, eps=1e-9):
assert(img_flt.dtype in [np.float32, np.float64, np.double, np.single])
img_max = np.amax(img_flt)
img_min = np.amin(img_flt)
img_range = img_max - img_min
if img_range < eps:
img_range = 1
img = ((img_flt-img_min)*255/img_range).astype(np.uint8)
return img
# remove borders from img
def remove_borders(image, borders):
shape = image.shape
new_im = np.zeros_like(image)
if len(shape) == 4:
shape = [shape[1], shape[2], shape[3]]
new_im[:, borders:shape[0]-borders, borders:shape[1]-borders, :] = image[:, borders:shape[0]-borders, borders:shape[1]-borders, :]
elif len(shape) == 3:
new_im[borders:shape[0] - borders, borders:shape[1] - borders, :] = image[borders:shape[0] - borders, borders:shape[1] - borders, :]
else:
new_im[borders:shape[0] - borders, borders:shape[1] - borders] = image[borders:shape[0] - borders, borders:shape[1] - borders]
return new_im