forked from jsccast/tinygraph
-
Notifications
You must be signed in to change notification settings - Fork 0
/
steps.go
274 lines (237 loc) · 6.53 KB
/
steps.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
// Copyright 2014 Comcast Cable Communications Management, LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tinygraph
// This code provides a slightly higher-level interface to Graph.Do().
// In(), Out(), Do(), and Walk() are the top-level functions. See
// 'steps_test.go' and 'examples/' for some examples.
// ToDo: Unexpose some functions.
// ToDo: Examples in steps_test.go
import (
"fmt"
)
// A Stepper defines what to do when walking a graph from some path.
// All the logic is given by the 'step' function, which possibly
// extends the current path. A Stepper is a pretty low-level thing.
type Stepper struct {
iperm Index
index Index
operm Index
pattern Triple
pred func(Triple) bool
fs []func(Path)
previous *Stepper
}
type Path []Triple
type Chants chan Path
type Vertex []byte
// We wrap because Otto wants us to.
type Chan struct {
c Chants
done chan (struct{})
}
func NewChan() *Chan {
return &Chan{make(Chants, *chanBufferSize), make(chan (struct{}))}
}
const (
Open uint32 = iota
// ToDo: No this. Need another channel for control.
Closed
)
func (c *Chan) Close() {
close(c.done)
}
func (v *Vertex) toTriple() Triple {
return Triple{nil, nil, *v, nil}
}
// Start walking.
func (g *Graph) launch(c *Chan, at Triple, ss []*Stepper) {
g.step(c, Path{at}, ss)
select {
case <-c.done:
default:
(*c).c <- nil
}
}
// Walk starts a graph walk at the given vertex. You get a channel of
// paths. A path is just an array of triples. The traversal is
// defined by the given array of Steppers (such as In()s and Outs()).
func (g *Graph) Walk(o Vertex, ss []*Stepper) *Chan {
c := NewChan()
go g.launch(c, o.toTriple(), ss)
return c
}
// Perform all stepper function invocation (if any).
func (s *Stepper) exec(path Path) {
for _, f := range s.fs {
f(path)
}
}
func (g *Graph) step(c *Chan, ts Path, ss []*Stepper) bool {
if len(ss) == 0 {
select {
case _ = <-c.done:
return false
default:
(*c).c <- ts[1:]
}
} else {
at := &ts[len(ts)-1]
s := ss[0]
if s.pred != nil {
if s.pred(*at) {
s.exec(ts[1:])
g.step(c, ts, ss[1:])
}
} else {
u := at.Permute(s.iperm)
if s.pattern.S != nil {
u.S = s.pattern.S
}
u.P = s.pattern.P
u.O = nil
i := g.NewIndexIterator(s.index, u, nil)
for i.Next() {
t := IndexedTripleFromBytes(s.index, i.Key(), i.Value())
t = t.Permute(s.index).Permute(s.operm)
path := append(ts, *t)
s.exec(path[1:])
if !g.step(c, path, ss[1:]) {
return false
}
}
}
}
return true
}
// Out returns a Stepper that traverses all edges out of the Stepper's input verticies.
func Out(p []byte) *Stepper {
return &Stepper{OPS, SPO, SPO, Triple{nil, p, nil, nil}, nil, make([]func(Path), 0, 0), nil}
}
// Out extends the stepper to follow out-bound edges with the given property.
func (s *Stepper) Out(p []byte) *Stepper {
next := Out(p)
next.previous = s
return next
}
// AllOut returns a Stepper that traverses all out-bound edges.
func AllOut() *Stepper {
return &Stepper{OPS, SPO, SPO, Triple{nil, nil, nil, nil}, nil, make([]func(Path), 0, 0), nil}
}
// AllOut extends the stepper to follow all edges.
func (s *Stepper) AllOut() *Stepper {
next := AllOut()
next.previous = s
return next
}
// In returns a Stepper that traverses all edges into of the Stepper's input verticies.
func In(p []byte) *Stepper {
return &Stepper{OPS, OPS, OPS, Triple{nil, p, nil, nil}, nil, make([]func(Path), 0, 0), nil}
}
// In extends the stepper to follow all in-bound edges with the given property.
func (s *Stepper) In(p []byte) *Stepper {
next := In(p)
next.previous = s
return next
}
// AllIn returns a Stepper that traverses all in-bound edges.
func AllIn() *Stepper {
return &Stepper{OPS, OPS, OPS, Triple{nil, nil, nil, nil}, nil, make([]func(Path), 0, 0), nil}
}
// AllIn extends the stepper to follow all in-bound edges.
func (s *Stepper) AllIn() *Stepper {
next := AllIn()
next.previous = s
return next
}
// Has returns a stepper that will follow edges for which pred returns true.
func Has(pred func(Triple) bool) *Stepper {
return &Stepper{SPO, SPO, SPO, Triple{}, pred, make([]func(Path), 0, 0), nil}
}
// Has extends a stepper to will follow edges for which pred returns true.
func (s *Stepper) Has(pred func(Triple) bool) *Stepper {
next := Has(pred)
next.previous = s
return next
}
// Do extends a stepper to execute a the given function for the current path.
func (s *Stepper) Do(f func(Path)) *Stepper {
s.fs = append(s.fs, f)
return s
}
func (path *Path) String() string {
acc := "["
for _, t := range *path {
acc += `"` + t.String() + `"`
}
acc += "]"
return acc
}
// Walk starts the stepper at the given vertex. Returns a channel of paths.
func (s *Stepper) Walk(g *Graph, from Vertex) *Chan {
at := s
ss := make([]*Stepper, 0, 1)
ss = append(ss, at)
for at.previous != nil {
ss = append([]*Stepper{at.previous}, ss...)
at = at.previous
}
return g.Walk(from, ss)
}
// Do is a utility function to call the given function on every path from the channel.
func (c *Chan) Do(f func(Path)) {
defer c.Close()
for {
x := <-(*c).c
if x == nil {
break
}
f(x)
}
}
// DoSome is a utility function to call the given function on paths
// from the channel at most 'limit' times.
func (c *Chan) DoSome(f func(Path), limit int64) {
defer c.Close()
n := int64(0)
for {
x := <-(*c).c
if x == nil || n == limit {
break
}
f(x)
n++
}
}
// Print is a utility function that prints every path from the channel.
func (c *Chan) Print() {
c.Do(func(path Path) { fmt.Printf("path %s\n", path.String()) })
}
// Collect is a utility function that gathers up all of the paths into
// a single array. Use caution. See 'CollectSome()' and 'DoSome()'.
func (c *Chan) Collect() []Path {
acc := make([]Path, 0, 0)
c.Do(func(ts Path) {
acc = append(acc, ts)
})
return acc
}
// CollectSome is a utility function that gathers up at most 'limit'
// paths into an array.
func (c *Chan) CollectSome(limit int64) []Path {
acc := make([]Path, 0, 0)
c.DoSome(func(ts Path) {
acc = append(acc, ts)
}, limit)
return acc
}