-
Notifications
You must be signed in to change notification settings - Fork 6
/
search.html
126 lines (102 loc) · 7.45 KB
/
search.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
<html>
<head>
<title>search.py</title>
</head>
<body>
<h3>search.py (<a href="../search.py">original</a>)</h3>
<hr>
<pre>
<span style="color: green; font-style: italic"># search.py
# ---------
# Licensing Information: Please do not distribute or publish solutions to this
# project. You are free to use and extend these projects for educational
# purposes. The Pacman AI projects were developed at UC Berkeley, primarily by
# John DeNero (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# For more info, see http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html
</span><span style="color: darkred">"""
In search.py, you will implement generic search algorithms which are called
by Pacman agents (in searchAgents.py).
"""
</span><span style="color: blue; font-weight: bold">import </span>util
<span style="color: blue; font-weight: bold">class </span>SearchProblem<span style="font-weight: bold">:
</span><span style="color: darkred">"""
This class outlines the structure of a search problem, but doesn't implement
any of the methods (in object-oriented terminology: an abstract class).
You do not need to change anything in this class, ever.
"""
</span><span style="color: blue; font-weight: bold">def </span>getStartState<span style="font-weight: bold">(</span><span style="color: blue">self</span><span style="font-weight: bold">):
</span><span style="color: darkred">"""
Returns the start state for the search problem
"""
</span>util<span style="font-weight: bold">.</span>raiseNotDefined<span style="font-weight: bold">()
</span><span style="color: blue; font-weight: bold">def </span>isGoalState<span style="font-weight: bold">(</span><span style="color: blue">self</span><span style="font-weight: bold">, </span>state<span style="font-weight: bold">):
</span><span style="color: darkred">"""
state: Search state
Returns True if and only if the state is a valid goal state
"""
</span>util<span style="font-weight: bold">.</span>raiseNotDefined<span style="font-weight: bold">()
</span><span style="color: blue; font-weight: bold">def </span>getSuccessors<span style="font-weight: bold">(</span><span style="color: blue">self</span><span style="font-weight: bold">, </span>state<span style="font-weight: bold">):
</span><span style="color: darkred">"""
state: Search state
For a given state, this should return a list of triples,
(successor, action, stepCost), where 'successor' is a
successor to the current state, 'action' is the action
required to get there, and 'stepCost' is the incremental
cost of expanding to that successor
"""
</span>util<span style="font-weight: bold">.</span>raiseNotDefined<span style="font-weight: bold">()
</span><span style="color: blue; font-weight: bold">def </span>getCostOfActions<span style="font-weight: bold">(</span><span style="color: blue">self</span><span style="font-weight: bold">, </span>actions<span style="font-weight: bold">):
</span><span style="color: darkred">"""
actions: A list of actions to take
This method returns the total cost of a particular sequence of actions. The sequence must
be composed of legal moves
"""
</span>util<span style="font-weight: bold">.</span>raiseNotDefined<span style="font-weight: bold">()
</span><span style="color: blue; font-weight: bold">def </span>tinyMazeSearch<span style="font-weight: bold">(</span>problem<span style="font-weight: bold">):
</span><span style="color: darkred">"""
Returns a sequence of moves that solves tinyMaze. For any other
maze, the sequence of moves will be incorrect, so only use this for tinyMaze
"""
</span><span style="color: blue; font-weight: bold">from </span>game <span style="color: blue; font-weight: bold">import </span>Directions
s <span style="font-weight: bold">= </span>Directions<span style="font-weight: bold">.</span>SOUTH
w <span style="font-weight: bold">= </span>Directions<span style="font-weight: bold">.</span>WEST
<span style="color: blue; font-weight: bold">return </span><span style="font-weight: bold">[</span>s<span style="font-weight: bold">,</span>s<span style="font-weight: bold">,</span>w<span style="font-weight: bold">,</span>s<span style="font-weight: bold">,</span>w<span style="font-weight: bold">,</span>w<span style="font-weight: bold">,</span>s<span style="font-weight: bold">,</span>w<span style="font-weight: bold">]
</span><span style="color: blue; font-weight: bold">def </span>depthFirstSearch<span style="font-weight: bold">(</span>problem<span style="font-weight: bold">):
</span><span style="color: darkred">"""
Search the deepest nodes in the search tree first [p 85].
Your search algorithm needs to return a list of actions that reaches
the goal. Make sure to implement a graph search algorithm [Fig. 3.7].
To get started, you might want to try some of these simple commands to
understand the search problem that is being passed in:
print "Start:", problem.getStartState()
print "Is the start a goal?", problem.isGoalState(problem.getStartState())
print "Start's successors:", problem.getSuccessors(problem.getStartState())
"""
</span><span style="color: red">"*** YOUR CODE HERE ***"
</span>util<span style="font-weight: bold">.</span>raiseNotDefined<span style="font-weight: bold">()
</span><span style="color: blue; font-weight: bold">def </span>breadthFirstSearch<span style="font-weight: bold">(</span>problem<span style="font-weight: bold">):
</span><span style="color: red">"Search the shallowest nodes in the search tree first. [p 81]"
"*** YOUR CODE HERE ***"
</span>util<span style="font-weight: bold">.</span>raiseNotDefined<span style="font-weight: bold">()
</span><span style="color: blue; font-weight: bold">def </span>uniformCostSearch<span style="font-weight: bold">(</span>problem<span style="font-weight: bold">):
</span><span style="color: red">"Search the node of least total cost first. "
"*** YOUR CODE HERE ***"
</span>util<span style="font-weight: bold">.</span>raiseNotDefined<span style="font-weight: bold">()
</span><span style="color: blue; font-weight: bold">def </span>nullHeuristic<span style="font-weight: bold">(</span>state<span style="font-weight: bold">, </span>problem<span style="font-weight: bold">=</span><span style="color: blue">None</span><span style="font-weight: bold">):
</span><span style="color: darkred">"""
A heuristic function estimates the cost from the current state to the nearest
goal in the provided SearchProblem. This heuristic is trivial.
"""
</span><span style="color: blue; font-weight: bold">return </span><span style="color: red">0
</span><span style="color: blue; font-weight: bold">def </span>aStarSearch<span style="font-weight: bold">(</span>problem<span style="font-weight: bold">, </span>heuristic<span style="font-weight: bold">=</span>nullHeuristic<span style="font-weight: bold">):
</span><span style="color: red">"Search the node that has the lowest combined cost and heuristic first."
"*** YOUR CODE HERE ***"
</span>util<span style="font-weight: bold">.</span>raiseNotDefined<span style="font-weight: bold">()
</span><span style="color: green; font-style: italic"># Abbreviations
</span>bfs <span style="font-weight: bold">= </span>breadthFirstSearch
dfs <span style="font-weight: bold">= </span>depthFirstSearch
astar <span style="font-weight: bold">= </span>aStarSearch
ucs <span style="font-weight: bold">= </span>uniformCostSearch
</pre>
</body>
</html>