-
Notifications
You must be signed in to change notification settings - Fork 0
/
mgb-ch04.tex
185 lines (146 loc) · 7.07 KB
/
mgb-ch04.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
%mgb-ch04
%Chapter IV - MGB Solutions
\begin{enumerate}
%4-1
\item[1.] (a) True $\quad$(b) False $\quad$(c) True
%4-2
\item[2.] \begin{enumerate}
\item[(a)] $\displaystyle E[X]=\int_0^\infty [1-F_X(z)]\ dz - \int_{-\infty}^0 F_X(z)\ dz < \int_0^\infty [1-F_Y(z)]\ dz - \int_{-\infty}^0 F_Y(z)\ dz = E[Y]$ \\
Using Eq. 6 of Chapter II (Page 65).
\item[(b)] There are many counterexamples. For example, define
\begin{align*} F_X(x) &= (1/2)I_{[0,1]}(x) + I_{[1,\infty)}(x)\ and \\
F_Y(y) &= (3/4)I_{[0,4)})(y) + I_{[4,\infty)}(y).
\end{align*}
\item[(c)] True.$\quad$(d) False.$\quad$(e) True.
\item[(f)] $F_X(x) = P[X\le z] = P[X+1\le z+1] = P[Y\le z+1] = F_Y(z+1)$
\end{enumerate}
%4-3
\item[3.] Yes.
%4-4
\item[4.] (b) 1/4
%4-5
\item[5.] \begin{enumerate}
\item[(a)] 1/36
\item[(b)] For $0< x< 1,\ f_{Y\vert X}(y\vert x) = [I_{(x,1)}(y)]/(1-x).$
\end{enumerate}
%4-6
\item[6.] (b) 1/4 \\
(c) 1/6
%4-7
\item[7.] (b) No
%4-8
\item[8.] E[Y] = E[E[Y$\vert$X]] = 1 + p
%4-10
\item[10.] ${}$\vspace{-7.0ex}
\begin{align*} P[X=Y] &= \sum_{j=0}^{\infty} P[X=Y\vert Y=j]P[Y=j] \\
&= \sum_{j=0}^{\infty} P[X=j\vert Y=j]P[Y=j] \\
&= \sum_{j=0}^{\infty} P[X=j]P[Y=j]\ (using\ independence) \\
&= \sum_{j=0}^{\infty} p^2(1-p)^{2j} \;=\; p/(2-p).
\end{align*}
%4-11
\item[11.] (a) No. (b) Yes. (c) No. (d) Yes.
\newpage
%$4-12
\item[12.] ${}$\vspace{-7.0ex}
\begin{align*} F_X(x) + F_Y(y) -1 &\le P[X\le x] + P[Y\le y] - P[X\le x\ or\ Y\le y] \\
&= P[X\le x; Y\le y] \;=\; F_{X,Y}(x,y).
\end{align*}
$F_{X,Y}(x,y) = P[X\le x; Y\le y] \le P[X\le x] = F_X(x)$; also \\
$F_{X,Y}(x,y) \le F_Y(y).$
%4-14
\item[14.] ${}$\vspace{-7.0ex}\begin{itemize}
\item[(d)] $P[Y-\alpha-\beta\mu\le z] = P[\alpha+\beta X - \alpha-\beta\mu\le z] = P[X-\mu\le z/\beta] = P[-(X-\mu)\le z/\beta]=$ \\
$P[-(Y-\alpha-\beta\mu) \le z].$
\end{itemize}
%4-16
\item[16.] ${}$\vspace{-7.0ex} \begin{itemize}
\item[(a)] Since $f_X(z) =f_Y(z) = I_{(0,1)}(z)$, X and Y are independent if and only if $\alpha=0$. \\
$\displaystyle cov[X,Y] = -\alpha\int_0^1\int_0^1(x-1/2)(y-1/2)(1-2x)(1-2y)\ dx\ dy = 0$ if and only if $\alpha = 0.$
\item[(b)] E[Area] = E[XY] = cov[X,Y] + 1/4
\item[(c)] $P[2X < 1] = 1/2.$
\item[(d)] Length of perimeter = $2(X + \sqrt{X^2+Y^2})$
\end{itemize}
%4-17
\item[17.] ${}$\vspace{-7.0ex} \begin{itemize}
\item[(b)] 9/16
\item[(c)] $E[Y_1] = 15/8; E[Y_2] = 25/8;$ \\ $var[Y_1] = 70/16 - (15/8)^2$ and $var[Y_2] = 170/16 - (25/8)^2$
\item[(e)] 5/11
\end{itemize}
%4-18
\item[18.] ${}$\vspace{-7.0ex} \begin{itemize}
\item[(c)] 3/4\;\; (d) Solve for $m$ in $1 - e^{-m} - me^{-m} = 1/2.$
\item[(e)] $1-e^{-1}$ \;\; (f) 0
\end{itemize}
%4-19
\item[19.] ${}$\vspace{-7.0ex} \begin{itemize}
\item[(a)] Do (b) first.
\item[(b)] $f_X(z) = f_Y(z) = ze^{-z}I_{(0,\infty)}(z).$
\item[(c)] $1 + (x/2)$
\item[(d)] $1 - 4e^{-2} - e^{-4}.$
\item[(e)] 1/2.
\item[(f)] $f_X(x)f_Y(y).$
\end{itemize}
\newpage
%4-20
\item[20.] ${}$\vspace{-7.0ex} \begin{align*}
(a)\quad P[\vert X + Y\vert \le 2\vert X\vert] &= \displaystyle \iint\limits_{\vert x+y\vert \le 2\vert x\vert}f(x)f(y)\ dx\ dy \\
&= \displaystyle \int_0^\infty\left(\int_{-3x}^x f(y)\ dy\right) f(x)\ dx + \int_{-\infty}^0 \left(\int_x^{-3x} f(y)\ dy\right) f(x)\ dx \\
&= \displaystyle 2\int_0^\infty\left(\int_{-3x}^{-x} f(y)\ dy\right) f(x)\ dx + 2\int_0^{\infty} \left(\int_{-x}^x f(y)\ dy\right) f(x)\ dx\; \text{(by symmetry)} \\
&= \displaystyle 2\int_0^\infty\left(\int_{-3x}^{-x} f(y)\ dy\right) f(x)\ dx + 1/2 > 1/2.
\end{align*}
%4-21
\item[21.] Note that $E[X-Y] = E[E[X\vert Y]] - E[Y] = 0,$ so \\ $var[X-Y] = E[(X-Y)^2,]$ but $E[(X-Y)^2] = E[X^2] - 2E[XY] + E[Y^2] = $ \\
$E[XE[Y\vert X]] - 2E[XY] + E[YE[X\vert Y]] = 0.$
%4-22
\item[22.] $P[\lcap\limits_{j=1}^mA_j] = 1 - P[\overline{\lcap\limits_{j=1}^mA_j}] = 1 - P[\lcup\limits_{j=1}^m\overline{A_j}] \ge 1 - \sum\limits_{j=1}^m P[\overline{A_j}] \ge 1 - t^{-2}.$
%4-23
\item[23.] $(c)\quad f_X(x_0)/[1-F_X(x_0)]$
%4-25
\item[25.] Let $Y$ denote $A$'s score and $Z$ denote $B$'s score. Then $X = Y -Z$. $Z$ is uniformly distributed over $(0,3)$. \\
$P[X\!\le\!x] = P[X\!\le\!x \vert Y\!=\!1]p + P[X\!\le\! x\vert Y\!=\!2](1-p) = P[1-Z\le x]p + P[2-Z\le x](1-p)$. Etc.
%4-30
\item[30.] $\displaystyle P[X=x] = \sum_{y=x}^{\infty}P[X=x\vert Y=y]P[Y=y] = \sum_{y=x}^{\infty}{y \choose x}p^xq^{y-x}e^{-\lambda}\lambda^y/y! = (\lambda p)^xe^{-\lambda p}/x!$; i.e., $X$ has a Poisson distribution with parameter $\lambda p$.
%4-32
\item[32.] \begin{itemize}
\item[(a)] $Y\vert X\!=\!5\sim N(10,25(1-\rho^2))$, so $.954 = P[4\!<\!Y\!<\!16\vert X\!=\!5]\!=\!\Phi\!\left(\dfrac{6}{5\sqrt{1-\rho^2}}\right) \!-\! \Phi\!\left(\dfrac{-6}{5\sqrt{1-\rho^2}}\right)$, which implies $\dfrac{6}{5\sqrt{1-\rho^2}} = 2$, hence $\rho = 4/5$.
\item[(b)] This will be easy after the next chapter when we learn that $X + Y \sim (15,26)$, giving $P[X+Y\le 16]$ = $\Phi\left(\dfrac{16-15}{\sqrt{26}}\right)$ = $\Phi\left(1/\sqrt{26}\right)$. For now, $\displaystyle P[X+Y\le 16]$ = \newline $\displaystyle \iint\limits_{x+y\le 16}\phi_{5,1}(x)\phi_{10,25}(y)\ dx\ dy = \iint\limits_{u+v\le 1}\phi(u)\phi(v)\ du\ dv = \mbox{(using\ symmetry)}$ = \newline $\displaystyle\int_{-\infty}^{\infty}\int_{-\infty}^{1/\sqrt{26}} \phi(u)\phi(v)\ du\ dv$ = $\Phi\left(1/\sqrt{26}\right)$.
\end{itemize}
%4-34
\item[34.] \begin{itemize}
\item[(a)] Multinomial with $k + 1 = 4$; $P[\mbox{no heads}] = 1/8$; $P[\mbox{one head}] = 3/8$; etc.
\end{itemize}
\newpage
%4-35
\item[35.] \begin{itemize}
\item[(a)] $P[X=x,Y=y] = \dfrac{\displaystyle {4\choose x}{4\choose y}{44\choose 6-x-y}}{\displaystyle {52\choose 6}}$
\end{itemize}
%4-36
\item[36.] \begin{itemize}
\item[(a)] $(26-9x)/(9-3x)$
\item[(e)] $E[XY\vert X=x] = xE[Y\vert X=x]$.
\end{itemize}
%4-40
\item[40.] No
%4-42
\item[42.] $m_{Y\vert X=x}(t) = E[e^{tY}\vert X=x]$. $m_Y(t) = E[e^{tY}] = E[E[e^{tY}\vert X]] =E[m_{Y\vert X}(t)]$.
%4-43
\item[43.] (b) 1$\qquad$ (c) $\rho_{X,Y}=1/2\qquad$ (d)$f_X(x)f_Y(y)$
%4-44
\item[44.] \begin{itemize}
\item[(a)] $E[Y] = E[E[Y|X]] = E[X+1/2] = 1$
\item[(b)] $cov[X,Y] = 1/12$
\item[(c)] 1/4
\end{itemize}
%4-45
\item[45.] Special case of Problem 46.
%4-46
\item[46.] The joint density of $X$ and $Y$ might have two, three, or four mass points. Consider the case of four mass points. Let $p_{ij} = P[X=x_i; Y=y_j]$ for $i,j=1,2$, where $x_1<x_2$ and $y_1<y_2$. \newline
$\mbox{Write }p_{1.} = p_{11} + p_{12} = P[X=x_1]$, \\
$\phantom{\mbox{Write }}p_{2.} = p_{21} + p_{22} = P[X=x_2]$, \\
$\phantom{\mbox{Write }}p_{.1} = p_{11} + p_{21} = P[Y=y_1]$, and \\
$\phantom{\mbox{Write }}p_{.2} = p_{12} + p_{22} = P[Y=y_2]$. \\
Let $U = (X-x_1)/(x_2-x_1)$ and $V = (Y-y_1)/(y_2-y_1)$. \\
Now $\mbox{cov}[X,Y]=0$ if and only if $\mbox{cov}[U,V]=0$ and $X$ and $Y$ are independent if and only if $U$ and $V$ are independent. \\
$\mbox{cov}[U,V] = E[UV]-E[U]E[V] = p_{22} - p_{2.}p_{.2}$. \\
$\mbox{cov}[U,V]=0$ implies $p_{22}=p_{2.}p_{.2}$ which in turn implies independence.
\end{enumerate}