forked from bubbliiiing/ssd-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
171 lines (153 loc) · 7.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from nets.ssd import get_ssd
from nets.ssd_training import Generator,MultiBoxLoss
from torch.utils.data import DataLoader
from utils.dataloader import ssd_dataset_collate, SSDDataset
from utils.config import Config
from torchsummary import summary
from torch.autograd import Variable
from tqdm import tqdm
import torch.backends.cudnn as cudnn
import time
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.nn.init as init
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
if __name__ == "__main__":
# ------------------------------------#
# 先冻结一部分权重训练
# 后解冻全部权重训练
# 先大学习率
# 后小学习率
# ------------------------------------#
lr = 5e-4
freeze_lr = 1e-4
Cuda = True
Start_iter = 0
Freeze_epoch = 25
Epoch = 50
Batch_size = 4
#-------------------------------#
# Dataloder的使用
#-------------------------------#
Use_Data_Loader = True
model = get_ssd("train",Config["num_classes"])
print('Loading weights into state dict...')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_dict = model.state_dict()
pretrained_dict = torch.load("model_data/ssd_weights.pth", map_location=device)
pretrained_dict = {k: v for k, v in pretrained_dict.items() if np.shape(model_dict[k]) == np.shape(v)}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
print('Finished!')
net = model.train()
if Cuda:
net = torch.nn.DataParallel(model)
cudnn.benchmark = True
net = net.cuda()
annotation_path = '2007_train.txt'
with open(annotation_path) as f:
lines = f.readlines()
np.random.seed(10101)
np.random.shuffle(lines)
np.random.seed(None)
num_train = len(lines)
if Use_Data_Loader:
train_dataset = SSDDataset(lines[:num_train], (Config["min_dim"], Config["min_dim"]))
gen = DataLoader(train_dataset, batch_size=Batch_size, num_workers=8, pin_memory=True,
drop_last=True, collate_fn=ssd_dataset_collate)
else:
gen = Generator(Batch_size, lines,
(Config["min_dim"], Config["min_dim"]), Config["num_classes"]).generate()
criterion = MultiBoxLoss(Config['num_classes'], 0.5, True, 0, True, 3, 0.5,
False, Cuda)
epoch_size = num_train // Batch_size
if True:
# ------------------------------------#
# 冻结一定部分训练
# ------------------------------------#
for param in model.vgg.parameters():
param.requires_grad = False
optimizer = optim.Adam(net.parameters(), lr=lr)
lr_scheduler = optim.lr_scheduler.StepLR(optimizer,step_size=1,gamma=0.95)
for epoch in range(Start_iter,Freeze_epoch):
with tqdm(total=epoch_size,desc=f'Epoch {epoch + 1}/{Freeze_epoch}',postfix=dict,mininterval=0.3) as pbar:
loc_loss = 0
conf_loss = 0
for iteration, batch in enumerate(gen):
if iteration >= epoch_size:
break
images, targets = batch[0], batch[1]
with torch.no_grad():
if Cuda:
images = Variable(torch.from_numpy(images).type(torch.FloatTensor)).cuda()
targets = [Variable(torch.from_numpy(ann).type(torch.FloatTensor)).cuda() for ann in targets]
else:
images = Variable(torch.from_numpy(images).type(torch.FloatTensor))
targets = [Variable(torch.from_numpy(ann).type(torch.FloatTensor)) for ann in targets]
# 前向传播
out = net(images)
# 清零梯度
optimizer.zero_grad()
# 计算loss
loss_l, loss_c = criterion(out, targets)
loss = loss_l + loss_c
# 反向传播
loss.backward()
optimizer.step()
# 加上
loc_loss += loss_l.item()
conf_loss += loss_c.item()
pbar.set_postfix(**{'loc_loss' : loc_loss / (iteration + 1),
'conf_loss' : conf_loss / (iteration + 1),
'lr' : get_lr(optimizer)})
pbar.update(1)
lr_scheduler.step()
print('Saving state, iter:', str(epoch+1))
torch.save(model.state_dict(), 'logs/Epoch%d-Loc%.4f-Conf%.4f.pth'%((epoch+1),loc_loss/(iteration+1),conf_loss/(iteration+1)))
if True:
# ------------------------------------#
# 全部解冻训练
# ------------------------------------#
for param in model.vgg.parameters():
param.requires_grad = True
optimizer = optim.Adam(net.parameters(), lr=freeze_lr)
lr_scheduler = optim.lr_scheduler.StepLR(optimizer,step_size=1,gamma=0.95)
for epoch in range(Freeze_epoch,Epoch):
with tqdm(total=epoch_size,desc=f'Epoch {epoch + 1}/{Freeze_epoch}',postfix=dict,mininterval=0.3) as pbar:
loc_loss = 0
conf_loss = 0
for iteration, batch in enumerate(gen):
if iteration >= epoch_size:
break
images, targets = batch[0], batch[1]
with torch.no_grad():
if Cuda:
images = Variable(torch.from_numpy(images).type(torch.FloatTensor)).cuda()
targets = [Variable(torch.from_numpy(ann).type(torch.FloatTensor)).cuda() for ann in targets]
else:
images = Variable(torch.from_numpy(images).type(torch.FloatTensor))
targets = [Variable(torch.from_numpy(ann).type(torch.FloatTensor)) for ann in targets]
# 前向传播
out = net(images)
# 清零梯度
optimizer.zero_grad()
# 计算loss
loss_l, loss_c = criterion(out, targets)
loss = loss_l + loss_c
# 反向传播
loss.backward()
optimizer.step()
# 加上
loc_loss += loss_l.item()
conf_loss += loss_c.item()
pbar.set_postfix(**{'loc_loss' : loc_loss / (iteration + 1),
'conf_loss' : conf_loss / (iteration + 1),
'lr' : get_lr(optimizer)})
pbar.update(1)
lr_scheduler.step()
print('Saving state, iter:', str(epoch+1))
torch.save(model.state_dict(), 'logs/Epoch%d-Loc%.4f-Conf%.4f.pth'%((epoch+1),loc_loss/(iteration+1),conf_loss/(iteration+1)))