-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
69 lines (53 loc) · 1.77 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from ultralytics import YOLO
import cv2
import math
import pygame
# start webcam
cap = cv2.VideoCapture(0)
cap.set(3, 640)
cap.set(4, 480)
# Load a COCO-pretrained YOLOv8n model
model = YOLO('best.pt')
pygame.mixer.init()
# Display model information (optional)
#model.info()
# Train the model on the COCO8 example dataset for 100 epochs
#results = model.train(data='coco8.yaml', epochs=100, imgsz=640)
# Run inference with the YOLOv8n model on the 'bus.jpg' image
#results = model('a.jpg')
classNames = ['Grenade', 'Knife', 'Pistol', 'Rifle', 'Shotgun']
def play_audio(audio_file):
pygame.mixer.music.load(audio_file)
pygame.mixer.music.play()
while True:
success, img = cap.read()
results = model(img, stream=True)
# coordinates
for r in results:
boxes = r.boxes
for box in boxes:
# bounding box
x1, y1, x2, y2 = box.xyxy[0]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) # convert to int values
# put box in cam
cv2.rectangle(img, (x1, y1), (x2, y2), (255, 0, 255), 3)
# confidence
confidence = math.ceil((box.conf[0]*100))/100
if confidence>=0.65:
play_audio("alarm.mp3")
print("Confidence --->",confidence)
# class name
cls = int(box.cls[0])
print("Class name -->", classNames[cls])
# object details
org = [x1, y1]
font = cv2.FONT_HERSHEY_SIMPLEX
fontScale = 1
color = (255, 0, 0)
thickness = 2
cv2.putText(img, classNames[cls]+str(confidence), org, font, fontScale, color, thickness)
cv2.imshow('Webcam', img)
if cv2.waitKey(1) == ord('q'):
break
cap.release()
cv2.destroyAllWindows()