-
Notifications
You must be signed in to change notification settings - Fork 20
/
auto_novel_imagenet.py
229 lines (199 loc) · 10.1 KB
/
auto_novel_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import SGD, lr_scheduler
from sklearn.metrics.cluster import normalized_mutual_info_score as nmi_score
from sklearn.metrics import adjusted_rand_score as ari_score
from utils.util import BCE, PairEnum, cluster_acc, Identity, AverageMeter, seed_torch
from utils import ramps
from torchvision.models.resnet import BasicBlock
from data.imagenetloader import ImageNetLoader30, ImageNetLoader882_30Mix, ImageNetLoader882
from tqdm import tqdm
import numpy as np
import math
import os
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
class ResNet(nn.Module):
def __init__(self, block, layers, num_labeled_classes=10, num_unlabeled_classes=10):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(7, stride=1)
self.head1= nn.Linear(512 * block.expansion, num_labeled_classes)
self.head2= nn.Linear(512 * block.expansion, num_unlabeled_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
out1 = self.head1(x)
out2 = self.head2(x)
return out1, out2, x
def train(model, train_loader, labeled_eval_loader, unlabeled_eval_loader, args):
optimizer = SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=args.gamma)
criterion1 = nn.CrossEntropyLoss()
criterion2 = BCE()
for epoch in range(args.epochs):
loss_record = AverageMeter()
model.train()
exp_lr_scheduler.step()
w = args.rampup_coefficient * ramps.sigmoid_rampup(epoch, args.rampup_length)
for batch_idx, ((x, x_bar), label, idx) in enumerate(tqdm(train_loader)):
x, x_bar, label = x.to(device), x_bar.to(device), label.to(device)
output1, output2, feat = model(x)
output1_bar, output2_bar, _ = model(x_bar)
prob1, prob1_bar, prob2, prob2_bar=F.softmax(output1, dim=1), F.softmax(output1_bar, dim=1), F.softmax(output2, dim=1), F.softmax(output2_bar, dim=1)
mask_lb = idx<train_loader.labeled_length
rank_feat = (feat[~mask_lb]).detach()
rank_idx = torch.argsort(rank_feat, dim=1, descending=True)
rank_idx1, rank_idx2= PairEnum(rank_idx)
rank_idx1, rank_idx2=rank_idx1[:, :args.topk], rank_idx2[:, :args.topk]
rank_idx1, _ = torch.sort(rank_idx1, dim=1)
rank_idx2, _ = torch.sort(rank_idx2, dim=1)
rank_diff = rank_idx1 - rank_idx2
rank_diff = torch.sum(torch.abs(rank_diff), dim=1)
target_ulb = torch.ones_like(rank_diff).float().to(device)
target_ulb[rank_diff>0] = -1
prob1_ulb, _= PairEnum(prob2[~mask_lb])
_, prob2_ulb = PairEnum(prob2_bar[~mask_lb])
loss_ce = criterion1(output1[mask_lb], label[mask_lb])
loss_bce = criterion2(prob1_ulb, prob2_ulb, target_ulb)
consistency_loss = (F.mse_loss(prob1, prob1_bar) + F.mse_loss(prob2, prob2_bar))
loss = loss_ce + loss_bce + w * consistency_loss
loss_record.update(loss.item(), x.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg))
print('test on labeled classes')
args.head = 'head1'
test(model, labeled_eval_loader, args)
print('test on unlabeled classes')
args.head='head2'
test(model, unlabeled_eval_loader, args)
def test(model, test_loader, args):
model.eval()
preds=np.array([])
targets=np.array([])
for batch_idx, (x, label, _) in enumerate(tqdm(test_loader)):
x, label = x.to(device), label.to(device)
output1, output2, _ = model(x)
if args.head=='head1':
output = output1
else:
output = output2
_, pred = output.max(1)
targets=np.append(targets, label.cpu().numpy())
preds=np.append(preds, pred.cpu().numpy())
acc, nmi, ari = cluster_acc(targets.astype(int), preds.astype(int)), nmi_score(targets, preds), ari_score(targets, preds)
print('Test acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
def copy_param(model, pretrain_dir):
pre_dict = torch.load(pretrain_dir)
new=list(pre_dict.items())
dict_len = len(pre_dict.items())
model_kvpair=model.state_dict()
count=0
for key, value in model_kvpair.items():
if count < dict_len:
layer_name,weights=new[count]
model_kvpair[key]=weights
count+=1
else:
break
model.load_state_dict(model_kvpair)
return model
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(
description='cluster',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--device_ids', default=[0], type=int, nargs='+',
help='device ids assignment (e.g 0 1 2 3)')
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--gamma', type=float, default=0.1)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight_decay', type=float, default=1e-4)
parser.add_argument('--epochs', default=90, type=int)
parser.add_argument('--rampup_length', default=50, type=int)
parser.add_argument('--rampup_coefficient', type=float, default=10.0)
parser.add_argument('--step_size', default=30, type=int)
parser.add_argument('--batch_size', default=512, type=int)
parser.add_argument('--unlabeled_batch_size', default=128, type=int)
parser.add_argument('--num_labeled_classes', default=882, type=int)
parser.add_argument('--num_unlabeled_classes', default=30, type=int)
parser.add_argument('--dataset_root', type=str, default='./data/datasets/ImageNet/')
parser.add_argument('--exp_root', type=str, default='./data/experiments/')
parser.add_argument('--warmup_model_dir', type=str, default='./data/experiments/pretrained/resnet18_imagenet_classif_882_ICLR18.pth')
parser.add_argument('--topk', default=5, type=int)
parser.add_argument('--model_name', type=str, default='resnet')
parser.add_argument('--seed', default=1, type=int)
parser.add_argument('--unlabeled_subset', type=str, default='A')
parser.add_argument('--mode', type=str, default='train')
args = parser.parse_args()
args.cuda = torch.cuda.is_available()
device = torch.device("cuda" if args.cuda else "cpu")
seed_torch(args.seed)
runner_name = os.path.basename(__file__).split(".")[0]
model_dir= os.path.join(args.exp_root, runner_name)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
args.model_dir = model_dir+'/'+'{}_{}.pth'.format(args.model_name, args.unlabeled_subset)
model = ResNet(BasicBlock, [2,2,2,2], args.num_labeled_classes, args.num_unlabeled_classes)
model = nn.DataParallel(model, args.device_ids).to(device)
model = copy_param(model, args.warmup_model_dir)
for name, param in model.named_parameters():
if 'head' not in name and 'layer4' not in name:
param.requires_grad = False
mix_train_loader = ImageNetLoader882_30Mix(args.batch_size, num_workers=8, path=args.dataset_root, unlabeled_subset=args.unlabeled_subset, aug='twice', shuffle=True, subfolder='train', unlabeled_batch_size=args.unlabeled_batch_size)
labeled_eval_loader = ImageNetLoader882(args.batch_size, num_workers=8, path=args.dataset_root, aug=None, shuffle=False, subfolder='val')
unlabeled_eval_loader = ImageNetLoader30(args.batch_size, num_workers=8, path=args.dataset_root, subset=args.unlabeled_subset, aug=None, shuffle=False, subfolder='train')
if args.mode == 'train':
train(model, mix_train_loader, labeled_eval_loader, unlabeled_eval_loader, args)
torch.save(model.state_dict(), args.model_dir)
print("model saved to {}.".format(args.model_dir))
else:
print("model loaded from {}.".format(args.model_dir))
model.load_state_dict(torch.load(args.model_dir))
print('test on labeled classes')
args.head = 'head1'
test(model, labeled_eval_loader, args)
print('test on unlabeled classes')
args.head = 'head2'
test(model, unlabeled_eval_loader, args)