diff --git a/modules/api/api.py b/modules/api/api.py index 844e31ee75a..905ef9c9536 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -29,7 +29,7 @@ from modules.sd_models_config import find_checkpoint_config_near_filename from modules.realesrgan_model import get_realesrgan_models from modules import devices -from typing import Dict, List, Any +from typing import Any import piexif import piexif.helper from contextlib import closing @@ -221,15 +221,15 @@ def __init__(self, app: FastAPI, queue_lock: Lock): self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=models.OptionsModel) self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"]) self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=models.FlagsModel) - self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[models.SamplerItem]) - self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[models.UpscalerItem]) - self.add_api_route("/sdapi/v1/latent-upscale-modes", self.get_latent_upscale_modes, methods=["GET"], response_model=List[models.LatentUpscalerModeItem]) - self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[models.SDModelItem]) - self.add_api_route("/sdapi/v1/sd-vae", self.get_sd_vaes, methods=["GET"], response_model=List[models.SDVaeItem]) - self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[models.HypernetworkItem]) - self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[models.FaceRestorerItem]) - self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[models.RealesrganItem]) - self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[models.PromptStyleItem]) + self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=list[models.SamplerItem]) + self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=list[models.UpscalerItem]) + self.add_api_route("/sdapi/v1/latent-upscale-modes", self.get_latent_upscale_modes, methods=["GET"], response_model=list[models.LatentUpscalerModeItem]) + self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=list[models.SDModelItem]) + self.add_api_route("/sdapi/v1/sd-vae", self.get_sd_vaes, methods=["GET"], response_model=list[models.SDVaeItem]) + self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=list[models.HypernetworkItem]) + self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=list[models.FaceRestorerItem]) + self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=list[models.RealesrganItem]) + self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=list[models.PromptStyleItem]) self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=models.EmbeddingsResponse) self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"]) self.add_api_route("/sdapi/v1/refresh-vae", self.refresh_vae, methods=["POST"]) @@ -242,8 +242,8 @@ def __init__(self, app: FastAPI, queue_lock: Lock): self.add_api_route("/sdapi/v1/unload-checkpoint", self.unloadapi, methods=["POST"]) self.add_api_route("/sdapi/v1/reload-checkpoint", self.reloadapi, methods=["POST"]) self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=models.ScriptsList) - self.add_api_route("/sdapi/v1/script-info", self.get_script_info, methods=["GET"], response_model=List[models.ScriptInfo]) - self.add_api_route("/sdapi/v1/extensions", self.get_extensions_list, methods=["GET"], response_model=List[models.ExtensionItem]) + self.add_api_route("/sdapi/v1/script-info", self.get_script_info, methods=["GET"], response_model=list[models.ScriptInfo]) + self.add_api_route("/sdapi/v1/extensions", self.get_extensions_list, methods=["GET"], response_model=list[models.ExtensionItem]) if shared.cmd_opts.api_server_stop: self.add_api_route("/sdapi/v1/server-kill", self.kill_webui, methods=["POST"]) @@ -563,7 +563,7 @@ def get_config(self): return options - def set_config(self, req: Dict[str, Any]): + def set_config(self, req: dict[str, Any]): checkpoint_name = req.get("sd_model_checkpoint", None) if checkpoint_name is not None and checkpoint_name not in checkpoint_aliases: raise RuntimeError(f"model {checkpoint_name!r} not found") diff --git a/modules/api/models.py b/modules/api/models.py index 94eca97dcb0..a0d80af8c0d 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -1,12 +1,10 @@ import inspect from pydantic import BaseModel, Field, create_model -from typing import Any, Optional -from typing_extensions import Literal +from typing import Any, Optional, Literal from inflection import underscore from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img from modules.shared import sd_upscalers, opts, parser -from typing import Dict, List API_NOT_ALLOWED = [ "self", @@ -130,12 +128,12 @@ def generate_model(self): ).generate_model() class TextToImageResponse(BaseModel): - images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.") + images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.") parameters: dict info: str class ImageToImageResponse(BaseModel): - images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.") + images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.") parameters: dict info: str @@ -168,10 +166,10 @@ class FileData(BaseModel): name: str = Field(title="File name") class ExtrasBatchImagesRequest(ExtrasBaseRequest): - imageList: List[FileData] = Field(title="Images", description="List of images to work on. Must be Base64 strings") + imageList: list[FileData] = Field(title="Images", description="List of images to work on. Must be Base64 strings") class ExtrasBatchImagesResponse(ExtraBaseResponse): - images: List[str] = Field(title="Images", description="The generated images in base64 format.") + images: list[str] = Field(title="Images", description="The generated images in base64 format.") class PNGInfoRequest(BaseModel): image: str = Field(title="Image", description="The base64 encoded PNG image") @@ -233,8 +231,8 @@ class PreprocessResponse(BaseModel): class SamplerItem(BaseModel): name: str = Field(title="Name") - aliases: List[str] = Field(title="Aliases") - options: Dict[str, str] = Field(title="Options") + aliases: list[str] = Field(title="Aliases") + options: dict[str, str] = Field(title="Options") class UpscalerItem(BaseModel): name: str = Field(title="Name") @@ -285,8 +283,8 @@ class EmbeddingItem(BaseModel): vectors: int = Field(title="Vectors", description="The number of vectors in the embedding") class EmbeddingsResponse(BaseModel): - loaded: Dict[str, EmbeddingItem] = Field(title="Loaded", description="Embeddings loaded for the current model") - skipped: Dict[str, EmbeddingItem] = Field(title="Skipped", description="Embeddings skipped for the current model (likely due to architecture incompatibility)") + loaded: dict[str, EmbeddingItem] = Field(title="Loaded", description="Embeddings loaded for the current model") + skipped: dict[str, EmbeddingItem] = Field(title="Skipped", description="Embeddings skipped for the current model (likely due to architecture incompatibility)") class MemoryResponse(BaseModel): ram: dict = Field(title="RAM", description="System memory stats") @@ -304,14 +302,14 @@ class ScriptArg(BaseModel): minimum: Optional[Any] = Field(default=None, title="Minimum", description="Minimum allowed value for the argumentin UI") maximum: Optional[Any] = Field(default=None, title="Minimum", description="Maximum allowed value for the argumentin UI") step: Optional[Any] = Field(default=None, title="Minimum", description="Step for changing value of the argumentin UI") - choices: Optional[List[str]] = Field(default=None, title="Choices", description="Possible values for the argument") + choices: Optional[list[str]] = Field(default=None, title="Choices", description="Possible values for the argument") class ScriptInfo(BaseModel): name: str = Field(default=None, title="Name", description="Script name") is_alwayson: bool = Field(default=None, title="IsAlwayson", description="Flag specifying whether this script is an alwayson script") is_img2img: bool = Field(default=None, title="IsImg2img", description="Flag specifying whether this script is an img2img script") - args: List[ScriptArg] = Field(title="Arguments", description="List of script's arguments") + args: list[ScriptArg] = Field(title="Arguments", description="List of script's arguments") class ExtensionItem(BaseModel): name: str = Field(title="Name", description="Extension name") diff --git a/modules/gitpython_hack.py b/modules/gitpython_hack.py index e537c1df93e..b55f0640e5e 100644 --- a/modules/gitpython_hack.py +++ b/modules/gitpython_hack.py @@ -23,7 +23,7 @@ def get_object_header(self, ref: str | bytes) -> tuple[str, str, int]: ) return self._parse_object_header(ret) - def stream_object_data(self, ref: str) -> tuple[str, str, int, "Git.CatFileContentStream"]: + def stream_object_data(self, ref: str) -> tuple[str, str, int, Git.CatFileContentStream]: # Not really streaming, per se; this buffers the entire object in memory. # Shouldn't be a problem for our use case, since we're only using this for # object headers (commit objects). diff --git a/modules/prompt_parser.py b/modules/prompt_parser.py index 334efeef317..ddf4d2dd4f3 100644 --- a/modules/prompt_parser.py +++ b/modules/prompt_parser.py @@ -2,7 +2,6 @@ import re from collections import namedtuple -from typing import List import lark # a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]" @@ -240,14 +239,14 @@ def get_multicond_prompt_list(prompts: SdConditioning | list[str]): class ComposableScheduledPromptConditioning: def __init__(self, schedules, weight=1.0): - self.schedules: List[ScheduledPromptConditioning] = schedules + self.schedules: list[ScheduledPromptConditioning] = schedules self.weight: float = weight class MulticondLearnedConditioning: def __init__(self, shape, batch): self.shape: tuple = shape # the shape field is needed to send this object to DDIM/PLMS - self.batch: List[List[ComposableScheduledPromptConditioning]] = batch + self.batch: list[list[ComposableScheduledPromptConditioning]] = batch def get_multicond_learned_conditioning(model, prompts, steps, hires_steps=None, use_old_scheduling=False) -> MulticondLearnedConditioning: @@ -278,7 +277,7 @@ def shape(self): return self["crossattn"].shape -def reconstruct_cond_batch(c: List[List[ScheduledPromptConditioning]], current_step): +def reconstruct_cond_batch(c: list[list[ScheduledPromptConditioning]], current_step): param = c[0][0].cond is_dict = isinstance(param, dict) diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py index c99695eb3d9..9ed7ad21d1b 100644 --- a/modules/script_callbacks.py +++ b/modules/script_callbacks.py @@ -1,7 +1,7 @@ import inspect import os from collections import namedtuple -from typing import Optional, Dict, Any +from typing import Optional, Any from fastapi import FastAPI from gradio import Blocks @@ -258,7 +258,7 @@ def image_grid_callback(params: ImageGridLoopParams): report_exception(c, 'image_grid') -def infotext_pasted_callback(infotext: str, params: Dict[str, Any]): +def infotext_pasted_callback(infotext: str, params: dict[str, Any]): for c in callback_map['callbacks_infotext_pasted']: try: c.callback(infotext, params) @@ -449,7 +449,7 @@ def on_infotext_pasted(callback): """register a function to be called before applying an infotext. The callback is called with two arguments: - infotext: str - raw infotext. - - result: Dict[str, any] - parsed infotext parameters. + - result: dict[str, any] - parsed infotext parameters. """ add_callback(callback_map['callbacks_infotext_pasted'], callback) diff --git a/modules/sub_quadratic_attention.py b/modules/sub_quadratic_attention.py index ae4ee4bbec0..4cb561ef207 100644 --- a/modules/sub_quadratic_attention.py +++ b/modules/sub_quadratic_attention.py @@ -15,7 +15,7 @@ from torch import Tensor from torch.utils.checkpoint import checkpoint import math -from typing import Optional, NamedTuple, List +from typing import Optional, NamedTuple def narrow_trunc( @@ -97,7 +97,7 @@ def chunk_scanner(chunk_idx: int) -> AttnChunk: ) return summarize_chunk(query, key_chunk, value_chunk) - chunks: List[AttnChunk] = [ + chunks: list[AttnChunk] = [ chunk_scanner(chunk) for chunk in torch.arange(0, k_tokens, kv_chunk_size) ] acc_chunk = AttnChunk(*map(torch.stack, zip(*chunks))) diff --git a/modules/ui.py b/modules/ui.py index 569dc807ced..3d1f52852cf 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1348,7 +1348,6 @@ def versions_html(): def setup_ui_api(app): from pydantic import BaseModel, Field - from typing import List class QuicksettingsHint(BaseModel): name: str = Field(title="Name of the quicksettings field") @@ -1357,7 +1356,7 @@ class QuicksettingsHint(BaseModel): def quicksettings_hint(): return [QuicksettingsHint(name=k, label=v.label) for k, v in opts.data_labels.items()] - app.add_api_route("/internal/quicksettings-hint", quicksettings_hint, methods=["GET"], response_model=List[QuicksettingsHint]) + app.add_api_route("/internal/quicksettings-hint", quicksettings_hint, methods=["GET"], response_model=list[QuicksettingsHint]) app.add_api_route("/internal/ping", lambda: {}, methods=["GET"])