forked from Rockyzsu/stock
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdelivery_order.py
375 lines (335 loc) · 14.2 KB
/
delivery_order.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# -*-coding=utf-8-*-
import re
import sys
__author__ = 'Rocky'
'''
http://30daydo.com
Contact: weigesysu@qq.com
'''
# 交割单处理 保存交割单到数据库
import os
import datetime
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from setting import get_engine, get_mysql_conn
engine = get_engine('db_stock', local=True)
pd.set_option('display.max_rows', None)
class Delivery_Order():
def __init__(self):
path = os.path.join(os.getcwd(), 'private/2019/GJ')
if os.path.exists(path) == False:
os.mkdir(path)
os.chdir(path)
# 合并一年的交割单
def years_ht(self):
df_list = []
for i in range(1, 2):
# 固定一个文件
filename = 'HT_2018-05_week4-5.xls'
# filename='2018-%s.xls' %str(i).zfill(2)
# filename='HT_2018_%s.xls' %str(i).zfill(2)
print(filename)
try:
t = pd.read_table(filename, encoding='gbk',
dtype={'证券代码': np.str})
except Exception as e:
print(e)
continue
# fee=t['手续费'].sum()+t['印花税'].sum()+t['其他杂费'].sum()
# print(i," fee: ")
# print(fee)
df_list.append(t)
# result.append(fee)
df = pd.concat(df_list)
df = df.reset_index()
# df['xxxx']=df['成交日期']+df['成交时间']
# df['成交日期']=pd.to_datetime(df['xxxx'],format='%Y%m%d %H:%M:%S')
df['成交日期'] = map(lambda x: datetime.datetime.strptime(
str(x), "%Y%m%d"), df['成交日期'])
df = df[df['摘要'] != '申购配号']
df = df[df['摘要'] != '质押回购拆出']
df = df[df['摘要'] != '拆出质押购回']
# print(df.info())
# print(df)
# print(df['2017-01'])
del df['合同编号']
del df['备注']
del df['股东帐户']
del df['结算汇率']
del df['Unnamed: 16']
df = df.sort_values(by='成交日期')
df = df.set_index('成交日期')
df.to_sql('tb_delivery_HT', engine, if_exists='append')
# df=df[(df['摘要']=='证券卖出') | (df['摘要']=='证券买入')]
# df= df.groupby(df['证券名称'])
# print(df.describe())
# print(df['手续费'].sum())
# print(df['印花税'].sum())
# df1=df[['证券名称','证券代码','成交数量', '成交均价' ,'成交金额','手续费', '印花税','发生金额','操作']]
# print(df1['证券名称'].value_counts())
# print(df.groupby(by=['证券名称'])['发生金额'].sum())
# df1.to_excel('2017-all.xls')
# print(df1.groupby(df1['证券名称']).describe())
# print(df1['2017-02'])
# df.to_excel('2016_delivery_order.xls')
# self.caculation(df)
# plt.plot(j,result)
# plt.show()
def caculation(self, df):
fee = df['手续费'].sum() + df['印花税'].sum() + df['其他杂费'].sum()
print(fee)
# 计算每个月的费用
def month(self):
pass
# 国金账户 2018-01 到 11月数据入库, 这个函数不用动了。保留csv格式
def years_gj(self):
df_list = []
k = [str(i) for i in range(1, 13)]
j = [i for i in range(1, 13)]
result = []
for i in range(2, 12):
# filename='GJ_2018_0{}.csv'.format(i)
# filename = 'GJ_2018_04.csv'
filename = 'GJ_2018_%s.csv' % str(i).zfill(2)
# filename='GJ_2018_%s.xls' %str(i).zfill(2)
print(filename)
try:
# t=pd.read_table(filename,encoding='gbk',dtype={'证券代码':np.str})
t = pd.read_csv(filename, encoding='gbk', dtype={'证券代码': np.str})
# t = pd.read_excel(filename, encoding='gbk',dtype={'证券代码': np.str})
except Exception as e:
print(e)
# return
# continue
# fee=t['手续费'].sum()+t['印花税'].sum()+t['其他杂费'].sum()
df_list.append(t)
# result.append(fee)
df = pd.concat(df_list)
df = df.reset_index(drop='True')
# df['成交时间'] = df['成交时间'].map(lambda x: x.zfill(8))
df['成交日期'] = df['成交日期'].astype(np.str) + df['成交时间']
# for i in df['成交日期'].values:
# try:
# x = datetime.datetime.strptime(
# i, "%Y%m%d%H:%M:%S").strftime('%Y-%m-%d %H:%M:%S')
# except Exception as e:
# print(e)
df['成交日期'] = df['成交日期'].map(lambda x: datetime.datetime.strptime(
x, "%Y%m%d%H:%M:%S").strftime('%Y-%m-%d %H:%M:%S'))
try:
df['成交日期'] = pd.to_datetime(df['成交日期'])
except Exception as e:
print(e)
# df=df[df['摘要']!='申购配号']
# df=df[df['摘要']!='质押回购拆出']
# df=df[df['摘要']!='拆出质押购回']
# print(df.info())
# print(df)
# print(df['2017-01'])
# del df['合同编号']
# del df['备注']
del df['股东帐户']
del df['成交时间']
# del df['结算汇率']
# del df['Unnamed: 17']
df = df.sort_values(by='成交日期', ascending=False)
df = df.set_index('成交日期')
# print(df.info())
# print(df)
#
df.to_sql('tb_delivery_gj', engine, if_exists='replace')
# df=df[(df['摘要']=='证券卖出') | (df['摘要']=='证券买入')]
# df= df.groupby(df['证券名称'])
# print(df.describe())
# print(df['手续费'].sum())
# print(df['印花税'].sum())
# df1=df[['证券名称','证券代码','成交数量', '成交均价' ,'成交金额','手续费', '印花税','发生金额','操作']]
# print(df1['证券名称'].value_counts())
# print(df.groupby(by=['证券名称'])['发生金额'].sum())
# df1.to_excel('2017-all.xls')
# print(df1.groupby(df1['证券名称']).describe())
# print(df1['2017-02'])
# df.to_excel('2016_delivery_order.xls')
# self.caculation(df)
# plt.plot(j,result)
# plt.show()
#
# 单独处理某个文件(单独一个月的数据) 文件格式:国金-保存为xls,然后另存为csv 或者按照天也可以
def years_gj_each_month_day(self,filename):
# filename = 'GJ_2019-05-11-05-16.csv'
try:
# 根据不同的格式选用不同的函数
# t=pd.read_table(filename,encoding='gbk',dtype={'证券代码':np.str})
t = pd.read_csv(filename, encoding='gbk', dtype={'证券代码': np.str})
# t = pd.read_excel(filename, encoding='gbk',dtype={'证券代码': np.str})
except Exception as e:
print(e)
# continue
# fee=t['手续费'].sum()+t['印花税'].sum()+t['其他杂费'].sum()
else:
# df_list.append(t)
# result.append(fee)
df = t
# df = pd.concat(df_list)
df = df.reset_index(drop='True')
# df['成交时间'] = df['成交时间'].map(lambda x: x.zfill(8))
df['成交日期'] = df['成交日期'].astype(np.str) + df['成交时间']
# for i in df['成交日期'].values:
# try:
# x = datetime.datetime.strptime(
# i, "%Y%m%d%H:%M:%S").strftime('%Y-%m-%d %H:%M:%S')
# except Exception as e:
# print(e)
df['成交日期'] = df['成交日期'].map(lambda x: datetime.datetime.strptime(
x, "%Y%m%d%H:%M:%S").strftime('%Y-%m-%d %H:%M:%S'))
try:
df['成交日期'] = pd.to_datetime(df['成交日期'])
except Exception as e:
print(e)
# df=df[df['摘要']!='申购配号']
# df=df[df['摘要']!='质押回购拆出']
# df=df[df['摘要']!='拆出质押购回']
# print(df.info())
# print(df)
# print(df['2017-01'])
# del df['合同编号']
# del df['备注']
del df['股东帐户']
del df['成交时间']
# del df['结算汇率']
# del df['Unnamed: 17']
df=df.fillna(0)
df=df[(df['操作']!='申购配号') & (df['操作']!='拆出质押购回') & (df['操作']!='质押回购拆出')]
df = df.sort_values(by='成交日期', ascending=False)
conn = get_mysql_conn('db_stock', 'local')
cursor = conn.cursor()
insert_cmd = '''
insert into tb_delivery_gj_django (成交日期,证券代码,证券名称,操作,成交数量,成交均价,成交金额,余额,发生金额,手续费,印花税,过户费,本次金额,其他费用,交易市场) values (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)'''
check_dup = '''
select * from tb_delivery_gj_django where 成交日期=%s and 证券代码=%s and 操作=%s and 成交数量=%s and 余额=%s
'''
for index, row in df.iterrows():
date=row['成交日期']
date=date.to_pydatetime()
# print(type(date))
# print(date)
cursor.execute(check_dup, (date, row['证券代码'], row['操作'], row['成交数量'], row['余额']))
if cursor.fetchall():
print('有重复数据,忽略')
else:
cursor.execute(insert_cmd, (
date, row['证券代码'], row['证券名称'], row['操作'], row['成交数量'], row['成交均价'], row['成交金额'], row['余额'],
row['发生金额'], row['手续费'], row['印花税'], row['过户费'], row['本次金额'], row['其他费用'], row['交易市场']))
conn.commit()
conn.close()
# df.to_sql('tb_delivery_gj', engine, if_exists='append')
# df=df[(df['摘要']=='证券卖出') | (df['摘要']=='证券买入')]
# df= df.groupby(df['证券名称'])
# print(df.describe())
# print(df['手续费'].sum())
# print(df['印花税'].sum())
# df1=df[['证券名称','证券代码','成交数量', '成交均价' ,'成交金额','手续费', '印花税','发生金额','操作']]
# print(df1['证券名称'].value_counts())
# print(df.groupby(by=['证券名称'])['发生金额'].sum())
# df1.to_excel('2017-all.xls')
# print(df1.groupby(df1['证券名称']).describe())
# print(df1['2017-02'])
# df.to_excel('2016_delivery_order.xls')
# self.caculation(df)
# plt.plot(j,result)
# plt.show()
def pretty(self):
df = pd.read_sql('tb_delivery_GJ', engine, index_col='成交日期')
# print(df)
# del df['Unnamed: 17']
del df['index']
df.to_sql('tb_delivery_GJ', engine, if_exists='replace')
# 数据同步到另一个django数据库
def data_sync(self):
conn = get_mysql_conn('db_stock', 'local')
cursor = conn.cursor()
# 最新的数据库
select_cmd = '''select * from tb_delivery_gj'''
cursor.execute(select_cmd)
ret = list(cursor.fetchall())
print('new db ', len(ret))
# 旧的数据库
select_cmd2 = '''select * from tb_delivery_gj_django'''
cursor.execute(select_cmd2)
ret2 = list(cursor.fetchall())
print('old db ', len(ret2))
ret_copy = ret.copy()
for item in ret:
# print(item)
for item2 in ret2:
if item[0] == item2[0] and item[1] == item2[1] and item[2] == item2[2] and item[4] == item2[4] and item[
5] == item2[5]:
try:
ret_copy.remove(item)
except Exception as e:
# print(e)
# print()
pass
# print(ret_copy)
for i in ret_copy:
# print(i)
update_sql = '''
insert into tb_delivery_gj_django (成交日期,证券代码,证券名称,操作,成交数量,成交均价,成交金额,)
'''
print('diff len ', len(ret_copy))
# 银转证
def bank_account():
folder_path = os.path.join(os.path.dirname(__file__), 'private')
os.chdir(folder_path)
df_list = []
for file in os.listdir(folder_path):
if re.search('2', file.decode('gbk')):
df = pd.read_table(file, encoding='gbk')
# df[df['']]
# print(df)
# df_list.append(df[['日期','操作','发生金额']])
df_list.append(df)
total_df = pd.concat(df_list)
# total_df=total_df.reset_index()
# del total_df['level_0']
del total_df['货币单位']
del total_df['合同编号']
del total_df['Unnamed: 8']
del total_df['银行名称']
# print(total_df)
# f=total_df[total_df['操作']=='证券转银行']['发生金额']*-1
total_df['发生金额'] = map(lambda x, y: x * -1 if y ==
'证券转银行' else x, total_df['发生金额'], total_df['操作'])
# print(total_df.columns)
# print(total_df5)
# total_df=total_df.reset_index()
# total_df=total_df.set_index('index')
# total_df=total_df.reset_index(drop=True)
total_df['委托时间'] = map(lambda x: str(x).zfill(6), total_df['委托时间'])
total_df['日期'] = map(lambda x, y: str(x) + " " + y,
total_df['日期'], total_df['委托时间'])
total_df['日期'] = pd.to_datetime(total_df['日期'], format='%Y%m%d %H%M%S')
total_df = total_df.set_index('日期')
df = total_df[total_df['备注'] == '成功[[0000]交易成功]']
# print(df)
# print(total_df.iloc[131])
# print(total_df['备注'].values)
print(df['发生金额'].sum())
# df.dropna('')
del df['备注']
del df['委托时间']
df.to_sql('tb_bank_cash', engine, if_exists='replace')
# print(df['2018'])
def main():
filename=sys.argv[1]
obj = Delivery_Order()
# obj.data_sync()
obj.years_gj_each_month_day(filename=filename)
# obj.years_gj_each_month()
# obj.years_gj()
# obj.years_ht()
# bank_account()
# obj.pretty()
if __name__ == '__main__':
main()