-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathconvert.py
executable file
·203 lines (171 loc) · 8.63 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Copyright 2021 Hirokazu Kameoka
import os
import argparse
import torch
import json
import numpy as np
import re
import pickle
from tqdm import tqdm
import yaml
import librosa
import soundfile as sf
from sklearn.preprocessing import StandardScaler
import net
from extract_features import logmelfilterbank
import sys
sys.path.append(os.path.abspath("pwg"))
from pwg.parallel_wavegan.utils import load_model
from pwg.parallel_wavegan.utils import read_hdf5
def audio_transform(wav_filepath, scaler, kwargs, device):
trim_silence = kwargs['trim_silence']
top_db = kwargs['top_db']
flen = kwargs['flen']
fshift = kwargs['fshift']
fmin = kwargs['fmin']
fmax = kwargs['fmax']
num_mels = kwargs['num_mels']
fs = kwargs['fs']
audio, fs_ = sf.read(wav_filepath)
if trim_silence:
#print('trimming.')
audio, _ = librosa.effects.trim(audio, top_db=top_db, frame_length=2048, hop_length=512)
if fs != fs_:
#print('resampling.')
audio = librosa.resample(audio, fs_, fs)
melspec_raw = logmelfilterbank(audio,fs, fft_size=flen,hop_size=fshift,
fmin=fmin, fmax=fmax, num_mels=num_mels)
melspec_raw = melspec_raw.astype(np.float32) # n_frame x n_mels
melspec_norm = scaler.transform(melspec_raw)
melspec_norm = melspec_norm.T # n_mels x n_frame
return torch.tensor(melspec_norm[None]).to(device, dtype=torch.float)
def make_onehot(clsidx, dim, device):
onehot = np.eye(dim, dtype=np.int)[clsidx]
return torch.tensor(onehot).to(device, dtype=torch.float)
def extract_num(s, p, ret=0):
search = p.search(s)
if search:
return int(search.groups()[0])
else:
return ret
def listdir_ext(dirpath,ext):
p = re.compile(r'(\d+)')
out = []
for file in sorted(os.listdir(dirpath), key=lambda s: extract_num(s, p)):
if os.path.splitext(file)[1]==ext:
out.append(file)
return out
def find_newest_model_file(model_dir, tag):
mfile_list = os.listdir(model_dir)
checkpoint = max([int(os.path.splitext(os.path.splitext(mfile)[0])[0]) for mfile in mfile_list if mfile.endswith('.{}.pt'.format(tag))])
return '{}.{}.pt'.format(checkpoint,tag)
def synthesis(melspec, pwg, pwg_config, savepath, device):
## Parallel WaveGAN / MelGAN
melspec = torch.tensor(melspec, dtype=torch.float).to(device)
#start = time.time()
x = pwg.inference(melspec).view(-1)
#elapsed_time = time.time() - start
#rtf2 = elapsed_time/audio_len
#print ("elapsed_time (waveform generation): {0}".format(elapsed_time) + "[sec]")
#print ("real time factor (waveform generation): {0}".format(rtf2))
# save as PCM 16 bit wav file
if not os.path.exists(os.path.dirname(savepath)):
os.makedirs(os.path.dirname(savepath))
sf.write(savepath, x.detach().cpu().clone().numpy(), pwg_config["sampling_rate"], "PCM_16")
def main():
parser = argparse.ArgumentParser(description='Test ConvS2S-VC')
parser.add_argument('--gpu', '-g', type=int, default=-1, help='GPU ID (negative value indicates CPU)')
parser.add_argument('-i', '--input', type=str, default='/misc/raid58/kameoka.hirokazu/python/db/arctic/wav/test',
help='root data folder that contains the wav files of input speech')
parser.add_argument('-o', '--out', type=str, default='./out/arctic',
help='root data folder where the wav files of the converted speech will be saved.')
parser.add_argument('--dataconf', type=str, default='./dump/arctic/data_config.json')
parser.add_argument('--stat', type=str, default='./dump/arctic/stat.pkl', help='state file used for normalization')
parser.add_argument('--model_rootdir', '-mdir', type=str, default='./model/arctic/', help='model file directory')
parser.add_argument('--checkpoint', '-ckpt', type=int, default=0, help='model checkpoint to load')
parser.add_argument('--attention_mode', '-attn', type=str, default='raw', help='attention mode ("raw", "forward", or "diagonal")')
parser.add_argument('--experiment_name', '-exp', default='experiment1', type=str, help='experiment name')
parser.add_argument('--vocoder', '-voc', default='parallel_wavegan.v1', type=str,
help='neural vocoder type name (e.g., parallel_wavegan.v1, melgan.v3.long)')
parser.add_argument('--voc_dir', '-vdir', type=str, default='pwg/egs/arctic_4spk_flen64ms_fshift8ms/voc1',
help='directory of trained neural vocoder')
args = parser.parse_args()
# Set up GPU
if torch.cuda.is_available() and args.gpu >= 0:
device = torch.device('cuda:%d' % args.gpu)
else:
device = torch.device('cpu')
if device.type == 'cuda':
torch.cuda.set_device(device)
input_dir = args.input
data_config_path = args.dataconf
model_config_path = os.path.join(args.model_rootdir,args.experiment_name,'model_config.json')
with open(data_config_path) as f:
data_config = json.load(f)
with open(model_config_path) as f:
model_config = json.load(f)
checkpoint = args.checkpoint
num_mels = model_config['num_mels']
n_spk = model_config['n_spk']
trg_spk_list = model_config['spk_list']
zdim = model_config['zdim']
mdim = model_config['mdim']
kdim = model_config['kdim']
hdim = model_config['hdim']
num_layers = model_config['num_layers']
reduction_factor = model_config['reduction_factor']
pos_weight = model_config['pos_weight']
attention_mode = args.attention_mode
stat_filepath = args.stat
melspec_scaler = StandardScaler()
if os.path.exists(stat_filepath):
with open(stat_filepath, mode='rb') as f:
melspec_scaler = pickle.load(f)
print('Loaded mel-spectrogram statistics successfully.')
else:
print('Stat file not found.')
# Set up main model
enc = net.Encoder1(num_mels*reduction_factor,n_spk,hdim,zdim,kdim,num_layers)
predec = net.PreDecoder1(num_mels*reduction_factor,n_spk,hdim,zdim,kdim,num_layers)
postdec = net.PostDecoder1(zdim*2,n_spk,hdim,num_mels*reduction_factor,mdim,num_layers)
model = net.ConvS2S(enc, predec, postdec)
tag = 'convs2s'
model_dir = os.path.join(args.model_rootdir,args.experiment_name)
mfilename = find_newest_model_file(model_dir, tag) if checkpoint <= 0 else '{}.{}.pt'.format(checkpoint,tag)
path = os.path.join(args.model_rootdir,args.experiment_name,mfilename)
if path is not None:
convs2s_checkpoint = torch.load(path, map_location=device)
model.load_state_dict(convs2s_checkpoint['model_state_dict'])
print('{}: {}'.format(tag, os.path.abspath(path)))
model.to(device).eval()
# Set up PWG
vocoder = args.vocoder
voc_dir = args.voc_dir
voc_yaml_path = os.path.join(voc_dir,'conf', '{}.yaml'.format(vocoder))
checkpointlist = listdir_ext(
os.path.join(voc_dir,'exp','train_nodev_all_{}'.format(vocoder)),'.pkl')
pwg_checkpoint = os.path.join(voc_dir,'exp',
'train_nodev_all_{}'.format(vocoder),
checkpointlist[-1]) # Find and use the newest checkpoint model.
print('vocoder: {}'.format(os.path.abspath(pwg_checkpoint)))
with open(voc_yaml_path) as f:
pwg_config = yaml.load(f, Loader=yaml.Loader)
pwg_config.update(vars(args))
pwg = load_model(pwg_checkpoint, pwg_config)
pwg.remove_weight_norm()
pwg = pwg.eval().to(device)
src_spk_list = sorted(os.listdir(input_dir))
for i, src_spk in enumerate(src_spk_list):
src_wav_dir = os.path.join(input_dir, src_spk)
for j, trg_spk in enumerate(trg_spk_list):
if src_spk != trg_spk:
print('Converting {}2{}...'.format(src_spk, trg_spk))
for n, src_wav_filename in enumerate(os.listdir(src_wav_dir)):
src_wav_filepath = os.path.join(src_wav_dir, src_wav_filename)
src_melspec = audio_transform(src_wav_filepath, melspec_scaler, data_config, device)
conv_melspec, A, elapsed_time = model.inference(src_melspec, i, j, reduction_factor, pos_weight, attention_mode)
conv_melspec = conv_melspec.T # n_frames x n_mels
out_wavpath = os.path.join(args.out,args.experiment_name,attention_mode,vocoder,'{}2{}'.format(src_spk,trg_spk), src_wav_filename)
synthesis(conv_melspec, pwg, pwg_config, out_wavpath, device)
if __name__ == '__main__':
main()