-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
256 lines (226 loc) · 11.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import torchvision
import numpy as np
from torchvision.transforms import ToPILImage, Compose
import torch.optim as optim
from utils.data import SketchyDB, UnnormImage
from utils.utils import *
import os
from os.path import isfile
from shutil import copyfile
from time import time
from models.PSim_net import PSimNet
from models.sketch_generator import SketchGenerator
import pickle
from torch.utils.tensorboard import SummaryWriter
import argparse
from models.resnet_classifier import ResnetClassifier
parser = argparse.ArgumentParser(description='Synthesizing human-like sketches',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--seed', default=1337, type=int, help='random seed')
parser.add_argument('--batch_size', default=32, type=int, help='minibatch size for training')
parser.add_argument('--batch_size_test', default=8, type=int, help='minibatch size for testing')
parser.add_argument('--epochs', default=300, type=int, help='number of training epochs')
parser.add_argument('--log_interval', default=10, type=int, help='how often to log (per epoch)')
parser.add_argument('--tensorboard_gridsize', default=8, type=int, help='size of image grid in tensorboard')
parser.add_argument('--test_interval', default=1, type=int, help='how often to test (in epochs)')
parser.add_argument('--save_interval', default=50, type=int, help='how often to keep a checkpoint (in epochs)')
parser.add_argument('--gpu', default=0, type=int, help='which gpu to use')
parser.add_argument('--run_name', default='test-run', type=str, help='name of the rollout')
parser.add_argument('--num_classes', default=125, type=int, help='number of classes in dataset')
parser.add_argument('--dataloader_num_workers', default=4, type=int, help='number of workers for dataloader')
parser.add_argument('--resume_training', default=False, type=bool, help='whether to resume training')
args = parser.parse_args()
IMAGE_TRANSFORM = Compose([UnnormImage(), ToPILImage()])
IMAGE_TRANSFORM_TB = Compose([UnnormImage()]) # for tensorboard
CLASSIFIER_PATH = 'pretrained_models/resnet_classifier.pt'
def test(model, test_loader, outpath, device, epoch, log=None, writer=None, comparator=None):
log.info(f'Classifier weights: {CLASSIFIER_PATH}')
classifier = ResnetClassifier()
classifier_checkpoint = torch.load(CLASSIFIER_PATH, map_location=torch.device("cpu"))
classifier.load_state_dict(classifier_checkpoint['state_dict'])
classifier.eval()
classifier.to(device)
correct_test_top1 = 0
correct_test_top5 = 0
test_loss_acc = 0
originals = []
outputs = []
import random
sample_batches = random.sample(range(len(test_loader)), args.tensorboard_gridsize)
for batch_idx, batch in enumerate(test_loader):
model.eval()
data, target, target_classifier = batch['image'].to(device), batch['sketch'].float().to(device), batch[
'labelID'].to(device)
labels_onehot = torch.zeros(data.size(0), args.num_classes).to(device)
labels_onehot.scatter_(1, target_classifier.unsqueeze(1), 1.)
output = model(data, labels_onehot)
# logging for tensorboard
if batch_idx in sample_batches:
sample_idx = random.choice(range(data.size(0)))
originals.append(IMAGE_TRANSFORM_TB(data[sample_idx, ...].cpu().detach()))
outputs.append(output[sample_idx, 0, ...].cpu().detach().unsqueeze(0).repeat(3, 1, 1))
test_loss_acc += comparator(output, target).item()
# classifier
output_classifier = classifier(output)
correct_test_top1 += correct_topk(output_classifier, target_classifier, 1)
correct_test_top5 += correct_topk(output_classifier, target_classifier, 5)
# tensorboard logging
imgrid = originals[:args.tensorboard_gridsize] + outputs[:args.tensorboard_gridsize]
imgrid = torchvision.utils.make_grid(imgrid, nrow=args.tensorboard_gridsize)
writer.add_image('test/samples', imgrid, epoch)
test_loss = test_loss_acc / (len(test_loader))
top1_accuracy = 100. * correct_test_top1 / len(test_loader.dataset)
top5_accuracy = 100. * correct_test_top5 / len(test_loader.dataset)
log.info(f'Test Loss: {test_loss:.4f}')
log.info(f'Test set accuracy (Top-1): {correct_test_top1}/{len(test_loader.dataset)} ({top1_accuracy:.0f}%)')
log.info(f'Test set accuracy (Top-5): {correct_test_top5}/{len(test_loader.dataset)} ({top5_accuracy:.0f}%)')
return top1_accuracy, top5_accuracy, test_loss
def train(model, device, train_loader, optimizer, epoch, log_interval=(),
comparator=None,
log=None,
writer=None):
loss_acc = 0
model.train()
for batch_idx, batch in enumerate(train_loader):
data, target, labels = batch['image'].to(device), batch['sketch'].float().to(device), batch['labelID'].to(
device)
labels_onehot = torch.zeros(data.size(0), args.num_classes).to(device)
labels_onehot.scatter_(1, labels.unsqueeze(1), 1.)
optimizer.zero_grad()
output = model(data, labels_onehot)
loss = comparator(output, target)
loss_acc += loss.item()
loss.backward()
optimizer.step()
if batch_idx in log_interval:
log.info(f'Train Epoch: {epoch}/{args.epochs} '
f'[{batch_idx * len(data)}/{len(train_loader.dataset)} '
f'({100. * batch_idx / len(train_loader):.0f}%)]\t'
f'Loss: {loss.item():.4f}')
if batch_idx == 0:
# extract imgs from first batch
originals = [IMAGE_TRANSFORM_TB(data[j, ...].cpu().detach()) for j in range(args.tensorboard_gridsize)]
targets = [target[j, 0, ...].cpu().detach().unsqueeze(0).repeat(3, 1, 1)
for j in range(args.tensorboard_gridsize)]
outputs = [output[j, 0, ...].cpu().detach().unsqueeze(0).repeat(3, 1, 1)
for j in range(args.tensorboard_gridsize)]
imgrid = originals + targets + outputs
imgrid = torchvision.utils.make_grid(imgrid, nrow=args.tensorboard_gridsize)
writer.add_image('train/samples', imgrid, epoch)
return loss_acc / len(train_loader)
def run_experiment(outpath=None, resume_training=False, log=None):
torch.manual_seed(args.seed)
writer = SummaryWriter(join(outpath, 'tensorboard'))
# list available GPUs with IDs
listGPUs()
device = torch.device(f"cuda:{args.gpu}")
dataset_test = SketchyDB('data',
image_type='bbox',
sketch_type='centered_scaled',
filter_erroneous=True,
filter_context=True,
filter_ambiguous=True,
filter_pose=True,
split='test')
test_loader = torch.utils.data.DataLoader(
dataset_test,
batch_size=args.batch_size_test,
shuffle=False,
num_workers=args.dataloader_num_workers)
dataset = SketchyDB('data',
image_type='bbox',
sketch_type='centered_scaled',
filter_erroneous=True,
filter_context=True,
filter_ambiguous=True,
filter_pose=True)
# setup log_interval to generate args.log_interval plots per epoch
log_interval = np.linspace(0, len(dataset) // args.batch_size, args.log_interval + 1, dtype=np.int).tolist()[:-1]
train_loader = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.dataloader_num_workers)
model = SketchGenerator()
model.to(device)
comparator = PSimNet(device=device)
optimizer = optim.Adam(model.decoder.parameters())
if resume_training is True:
checkpoint = join(outpath, f'models/{args.run_name}_last_checkpoint.pt')
print(f'loading checkpoint {checkpoint}')
checkpoint = torch.load(checkpoint, map_location=torch.device("cpu"))
start_epoch = checkpoint['epoch']
state_dict = checkpoint['state_dict']
model.load_state_dict(state_dict)
optimizer.load_state_dict(checkpoint['optimizer'])
else:
start_epoch = 1
# Get number of trainable parameters
log.info(f'Number of trainable model parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad):,}')
epoch_times = []
train_losses = []
test_losses = []
test_accs_top1 = []
test_accs_top5 = []
for epoch in range(start_epoch, args.epochs + 1):
start_time = time()
train_losses.append(train(model, device, train_loader, optimizer, epoch,
log_interval=log_interval,
comparator=comparator,
log=log,
writer=writer))
writer.add_scalar('losses/train', train_losses[-1], epoch)
# save checkpoint every epoch
fname = join(outpath, f'models/{args.run_name}_last_checkpoint.pt')
log.info(f'Saving model parameters to {fname}')
torch.save({'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()},
fname)
# keep models as specified by SAVE_INTERVAL
if epoch % args.test_interval == 0:
with torch.no_grad():
(test_acc_top1, test_acc_top5, test_loss) = test(model, test_loader, outpath, device, epoch,
log=log,
writer=writer,
comparator=comparator)
test_accs_top1.append(test_acc_top1)
test_accs_top5.append(test_acc_top5)
test_losses.append(test_loss)
writer.add_scalar('losses/test', test_losses[-1], epoch)
writer.add_scalar('losses/test_top1', test_accs_top1[-1], epoch)
writer.add_scalar('losses/test_top5', test_accs_top5[-1], epoch)
if epoch % args.save_interval == 0:
checkpoint_name = join(outpath, f'models/model_epoch{epoch}.pt')
log.info(f'Saving model parameters to {checkpoint_name}')
copyfile(fname, checkpoint_name)
# timing
epoch_times.append(time() - start_time)
time_remaining = (args.epochs - (epoch + 1)) * np.mean(epoch_times)
log.info(f'Time/epoch: {epoch_times[-1]:.1f} s; approximately {time_remaining / 3600:.1f} h remaining')
# save loss/accuracy
pickle.dump({'train': train_losses,
'test': test_losses,
'test_top1': test_accs_top1,
'test_top5': test_accs_top5,
'test_interval': args.test_interval,
'classifier': CLASSIFIER_PATH}, open(join(outpath, 'losses.pkl'), 'wb'))
# remove last checkpoint when training is finished
copyfile(fname, join(outpath, f'models/{args.run_name}.pt'))
os.remove(fname)
def main():
# define output directory
outpath = f'out/{args.run_name}'
print(f'starting run {args.run_name}')
# make sure not to overwrite any past runs and continue training per default
if isfile(join(outpath, f'models/{args.run_name}_last_checkpoint.pt')):
log = get_logger(outpath)
run_experiment(outpath=outpath, log=log, resume_training=True)
elif isfile(join(outpath, f'models/{args.run_name}.pt')):
print(f"Training finished")
else:
setup_output(outpath, overwrite_protection=True)
log = get_logger(outpath)
run_experiment(outpath=outpath, log=log)
if __name__ == '__main__':
main()