-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathinfinitree_concise.py
229 lines (210 loc) Β· 10.3 KB
/
infinitree_concise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# Copyright (c) 2021 kamyu. All rights reserved.
#
# Google Code Jam 2021 Virtual World Finals - Problem E. Infinitree
# https://codingcompetitions.withgoogle.com/codejam/round/0000000000436329/000000000084fc01
#
# Time: O(N^3.5 * logN + N^3 * logB), pass in PyPy2 but Python2
# Space: O(N^2.5 * logN + N^2 * logB)
#
# concise solution of infinitree.py
#
from itertools import izip
# Template modified from:
# https://github.com/kamyu104/GoogleCodeJam-2017/blob/master/Round%202/beaming_with_joy.py
def strongly_connected_components(graph): # Time: O(|V| + |E|) = O(N + 2N) = O(N), Space: O(|V|) = O(N)
def strongconnect(v, index_counter, index, lowlinks, stack, stack_set, result):
index[v] = index_counter[0]
lowlinks[v] = index_counter[0]
index_counter[0] += 1
stack_set.add(v)
stack.append(v)
for w in (graph[v] if v in graph else []):
if w not in index:
strongconnect(w, index_counter, index, lowlinks, stack, stack_set, result)
lowlinks[v] = min(lowlinks[v], lowlinks[w])
elif w in stack_set:
lowlinks[v] = min(lowlinks[v], index[w])
if lowlinks[v] == index[v]:
connected_component = []
w = None
while w != v:
w = stack.pop()
stack_set.remove(w)
connected_component.append(w)
result.append(set(connected_component))
index_counter, index, lowlinks = [0], {}, {}
stack, stack_set = [], set()
result = []
strongconnect(ROOT_COLOR, index_counter, index, lowlinks, stack, stack_set, result) # modified, only care about reachable colors
return result
# return cycle_adj, cycle_length only if all reachable colors belong to at most one cycle
def find_cycles(graph): # Time: O(N), Space: O(N)
cycle_adj, cycle_length = {}, {}
for scc in strongly_connected_components(graph):
if any(sum(int(x in scc) for x in graph[node]) == 2 for node in scc): # this is optional optimization
return {}, {} # have a reachable color belonging to more than one cycle, we only need to run single step solution
if any(sum(int(x in scc) for x in graph[node]) != 1 for node in scc):
continue
node = next(iter(scc))
for _ in xrange(len(scc)):
cycle_adj[node] = next(x for x in graph[node] if x in scc)
cycle_length[node] = len(scc)
node = cycle_adj[node]
return cycle_adj, cycle_length
def floor_log2_x(x): # Time: O(logx)
return x.bit_length()-1
def identity_matrix(N): # Time: O(N)
return [[int(i == j) for j in xrange(N)] for i in xrange(N)]
def e(i, N): # Time: O(N)
return [int(j == i) for j in xrange(N)]
def matrix_mult(A, B, INF): # Time: O(N^2) if A is a 1 x N matrix and B is a N x N matrix, O(N^3) if A, B are both N x N matrixs
result = [[0]*len(B[0]) for _ in xrange(len(A))]
B_T = zip(*B)
for result_i, A_i in izip(result, A):
for j, B_T_i in enumerate(B_T):
for A_i_j, B_T_i_j in izip(A_i, B_T_i):
result_i[j] += A_i_j*B_T_i_j
if result_i[j] > INF:
result_i[j] = INF
break
return result
def matrix_add(A, B, INF): # Time: O(N) if A, B are both 1 x N matrixs, O(N^2) if A, B are both N x N matrixs
result = [[0]*len(B[0]) for _ in xrange(len(A))]
for result_i, A_i, B_i in izip(result, A, B):
for j in xrange(len(result_i)):
result_i[j] = A_i[j]+B_i[j]
if result_i[j] > INF:
result_i[j] = INF
return result
# build [M, M^2, ..., M^(2^logx)] and [I, (I + M), (I + M + M^2 + M^3), (I + M + ... + M^(2^logx-1))]
def build_powers_and_power_series(N, M, INF, x): # Time: O(N^3 * logx)
logx = floor_log2_x(x)
I = identity_matrix(N)
# M_powers[i] for i in xrange(1+logx):
# 0: M
# 1: M^2
# ...
# logx: M^(2^logx)
M_powers = [M]
for _ in xrange(logx): # Time: O(N^3 * logx)
M_powers.append(matrix_mult(M_powers[-1], M_powers[-1], INF))
# M_power_series[i] for i in xrange(1+logx):
# 0: I
# 1: (I + M) * I = I + M
# 2: (I + M^2) * (I + M) = I + M + M^2 + M^3
# ...
# logx: (I + M^(2^(logx-1))) * (I + M + ... + M^(2^(logx-1)-1)) = I + M + ... + M^(2^logx-1)
M_power_series = [I]
for i in xrange(logx): # Time: O(N^3 * logx)
matrix = matrix_add(I, M_powers[i], INF)
M_power_series.append(matrix_mult(matrix, M_power_series[-1], INF))
return M_powers, M_power_series
# V * M^x by vector-matrix or matrix-matrix exponentiation
def get_V_M_power_x(M_powers, INF, V, x): # Time: O(N^2 * logx) if V is a 1 x N matrix, O(N^3 * logx) if V is a N x N matrix
basis, i = 1, 0
while basis <= x:
if x&basis:
V = matrix_mult(V, M_powers[i], INF)
basis, i = basis<<1, i+1
return V
# v * (I + M + M^2 + ... + M^x) by vector-matrix exponentiation
def get_v_M_power_series_x(N, M_powers, M_power_series, INF, v, x): # Time: O(N^2 * logx)
x += 1
u = [0]*N
basis, i = 1, 0
while basis <= x:
if x&basis:
# new_Pr = P_r*M^(2^i) + P_(2^i)
# new_u = v * new_Pr = v * (P_r*M^(2^i) + P_(2^i)) = u*M^(2^i) + v*P_(2^i)
u = matrix_add(matrix_mult([u], M_powers[i], INF),
matrix_mult([v], M_power_series[i], INF),
INF)[0]
basis, i = basis<<1, i+1
return u
def get_depth(N, M_powers, M_power_series, INF, v, x): # Time: O(N^2 * logx)
logx = floor_log2_x(x)
result = 0
u = [0]*N
basis = 1<<logx
# find max r s.t. sum(v * P_r) < x, where P_r = I + M + M^2 + ... + M^(r-1)
for i in reversed(xrange(logx+1)): # O(N^2 * logx)
# new_Pr = P_r*M^(2^i) + P_(2^i)
# new_u = v * new_Pr = v * (P_r*M^(2^i) + P_(2^i)) = u*M^(2^i) + v*P_(2^i)
new_u = matrix_add(matrix_mult([u], M_powers[i], INF),
matrix_mult([v], M_power_series[i], INF),
INF)[0]
if sum(new_u) < x:
u = new_u
result |= basis
basis >>= 1
return result
def get_single_step_position(M_powers, INF, ec, h, x): # Time: O(N^2 * logx)
left_cnt = sum(get_V_M_power_x(M_powers, INF, [ec], h-1)[0])
return (LEFT, x) if x < left_cnt else (RIGHT, x-left_cnt)
def get_multiple_steps_position(M_powers, Mh_power_series, INF, logp, v, delta_h, ec, x): # Time: O(N^2 * log(delta_h))
left_cnt = sum(get_V_M_power_x(M_powers, INF, matrix_mult([v], Mh_power_series[logp], INF), delta_h)[0])
mid_cnt = sum(get_V_M_power_x(M_powers, INF, [ec], delta_h)[0])
return 0 <= x-left_cnt < mid_cnt, x-left_cnt
def infinitree():
N, A, B = map(int, raw_input().strip().split())
L = map(int, raw_input().strip().split())
R = map(int, raw_input().strip().split())
N += 1
if A > B:
A, B, = B, A
INF = B
M = [[0]*N for _ in xrange(N)]
graph = {LEAF_COLOR:[]}
for i in xrange(ROOT_COLOR, N):
M[i][L[i-1]] += 1
M[i][R[i-1]] += 1
graph[i] = [L[i-1], R[i-1]]
Mh_powers, Mh_power_series = {}, {}
Mh_powers[1], Mh_power_series[1] = build_powers_and_power_series(N, M, INF, B) # Time: O(N^3 * logB)
h1 = get_depth(N, Mh_powers[1], Mh_power_series[1], INF, e(ROOT_COLOR, N), A)
h2 = get_depth(N, Mh_powers[1], Mh_power_series[1], INF, e(ROOT_COLOR, N), B)
x1 = A-sum(get_v_M_power_series_x(N, Mh_powers[1], Mh_power_series[1], INF, e(ROOT_COLOR, N), h1-1))-1
x2 = B-sum(get_v_M_power_series_x(N, Mh_powers[1], Mh_power_series[1], INF, e(ROOT_COLOR, N), h2-1))-1
cycle_adj, cycle_length = find_cycles(graph)
c = ROOT_COLOR
while (h1, x1) != (0, 0):
if c not in cycle_adj: # enter none-only-1-cycle node, Time: O(N^2 * logB) => Total Time: O(N^2 * (logB)^2)
side1, new_x1 = get_single_step_position(Mh_powers[1], INF, e(L[c-1], N), h1, x1)
side2, new_x2 = get_single_step_position(Mh_powers[1], INF, e(L[c-1], N), h2, x2)
if side1 != side2: # found lca
break
h1, x1 = h1-1, new_x1
h2, x2 = h2-1, new_x2
c = (L[c-1] if side1 == LEFT else R[c-1])
continue
# path from root to lca enter a new unseen cycle, we can speed up in this part of path,
# we run this multiple steps solution only if all reachable colors belong to at most one cycle,
# otherwise, the binary tree grows exponentially with height at most O(logB) so that single step solution is fast enough,
# and also saves the extra time and space cost from multiple steps solution
h = cycle_length[c]
if h not in Mh_powers: # lazy init, sum(distinct h) = N => distinct h at most O(sqrt(N)) times, each Time: O(N^3 * logh + N^3 * log(hi)) => Total Time: O(N^3.5 * logN + (N^3.5 * log(logB) + N^3 * logB)) = O(N^3.5 * logN + N^3 * logB) assumed O(N) = O(logB)
Mh_powers[h], Mh_power_series[h] = build_powers_and_power_series(N, get_V_M_power_x(Mh_powers[1], INF, identity_matrix(N), h), INF, min(h1, h2))
cycle, v = [], [0]*N
for x in reversed(xrange(h)): # Time: O(h * N^2 * logN) => Total Time O(N^3 * logN)
if cycle_adj[c] == R[c-1]:
v = matrix_add([v], [get_V_M_power_x(Mh_powers[1], INF, [e(L[c-1], N)], x)[0]], INF)[0]
c = cycle_adj[c]
cycle.append(c)
p, logp = 1, 0
while (p*2)*h <= min(h1, h2):
p, logp = p*2, logp+1
while p: # logp times => Total Time: O(k cycles * logp times * (N^2 * log(delta_h))) = O(N^3 * log(logB)^2 + N^2 * (logB)^2) = O(N^3 * logB) assumed O(N) = O(logB)
if p*h <= min(h1, h2):
ok1, new_x1 = get_multiple_steps_position(Mh_powers[1], Mh_power_series[h], INF, logp, v, h1-p*h, e(c, N), x1)
ok2, new_x2 = get_multiple_steps_position(Mh_powers[1], Mh_power_series[h], INF, logp, v, h2-p*h, e(c, N), x2)
if ok1 and ok2:
h1, x1 = h1-p*h, new_x1
h2, x2 = h2-p*h, new_x2
p, logp = p//2, logp-1
for x in cycle: # no need to do multiple steps solution
del cycle_adj[x]
return h1+h2
LEFT, RIGHT = xrange(2)
LEAF_COLOR, ROOT_COLOR = xrange(2) # leaf color is 0, root color is 1
for case in xrange(input()):
print 'Case #%d: %s' % (case+1, infinitree())